cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333013 Integers which can be written in exactly three ways as sum of two distinct nonzero pentagonal numbers.

This page as a plain text file.
%I A333013 #19 Jul 20 2023 17:28:54
%S A333013 2999,6450,6552,7177,8422,9204,9652,10037,10622,11380,11467,16577,
%T A333013 17652,17772,17789,17818,19132,19761,20177,21327,21477,22277,22702,
%U A333013 22855,23008,23212,23387,23427,23444,24402,24662,25677,25847,26286,26902,27649,27802,27847,28567,29927
%N A333013 Integers which can be written in exactly three ways as sum of two distinct nonzero pentagonal numbers.
%e A333013 2999 = P(24) + P(38) = P(13) + P(43) = P(9) + P(44), where P(n) is the n-th pentagonal number A000326.
%t A333013 dnpQ[n_]:=Count[IntegerPartitions[n,{2}],_?(AllTrue[(1+Sqrt[1+24#])/6,IntegerQ]&)]==3; Parallelize[Select[Range[30000],dnpQ]] (* or *) Select[Tally[Total/@Subsets[ PolygonalNumber[ 5,Range[200]],{2}]],#[[2]]==3&][[;;,1]]//Union (* _Harvey P. Dale_, Jul 20 2023 *)
%o A333013 (PARI) is(k) = sum(i=1, sqrt(1+12*k)\6, sqrt(1+24*k+12*i-36*i*i)%6==5) == 3; \\ _Jinyuan Wang_, Mar 06 2020
%Y A333013 Cf. A000326, A333011, A333012, A333014, A333015.
%K A333013 nonn
%O A333013 1,1
%A A333013 _Olivier Gérard_, Mar 05 2020