This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333028 #10 Apr 13 2020 01:39:58 %S A333028 1,2,4,3,7,14,5,11,23,17,8,18,37,28,19,13,29,60,45,31,25,21,47,97,73, %T A333028 50,41,27,34,76,157,118,81,66,44,30,55,123,254,191,131,107,71,49,35, %U A333028 89,199,411,309,212,173,115,79,57,43,144,322,665,500,343,280 %N A333028 Array consisting of the primitive rows of the Wythoff array (A035513), read by antidiagonals. %C A333028 In a row of the Wythoff array, either every two consecutive terms are relatively prime or else no two consecutive terms are relatively prime. In the first case, we call the row primitive; otherwise, the row is an integer multiple of a tail of a preceding row. The primitive rows are interspersed, in the sense that if h < k then the numbers in row k are interspersed, in magnitude, among numbers in row h. In each row, every pair of consecutive numbers is a Wythoff pair of relatively prime numbers. The array includes every prime. %e A333028 Northwest corner: %e A333028 1 2 3 5 8 13 21 34 %e A333028 4 7 11 18 29 47 76 123 %e A333028 14 23 37 60 97 157 254 411 %e A333028 17 28 45 73 118 191 309 500 %e A333028 19 31 50 81 131 212 343 555 %e A333028 25 41 66 107 173 280 453 733 %e A333028 27 44 71 115 186 301 487 788 %e A333028 30 49 79 128 207 335 542 877 %t A333028 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A333028 t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}] %t A333028 u = Flatten[Position[t, 1]]; v[n_, k_] := W[u[[n]], k]; %t A333028 TableForm[Table[v[n, k], {n, 1, 30}, {k, 1, 8}]] (* A333028 array *) %t A333028 Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A333028 sequence *) %Y A333028 Cf. A000045, A000032, A332937, A332938, A333029, A333086. %K A333028 nonn,tabl,easy %O A333028 1,2 %A A333028 _Clark Kimberling_, Mar 10 2020