A333029 Order array of array A333028, read by antidiagonals.
1, 2, 4, 3, 6, 10, 5, 8, 15, 11, 7, 12, 24, 18, 13, 9, 19, 38, 28, 21, 16, 14, 30, 58, 45, 32, 25, 17, 22, 47, 77, 65, 50, 40, 27, 20, 35, 67, 95, 84, 70, 60, 44, 31, 23, 55, 86, 112, 102, 89, 79, 64, 49, 36, 26, 74, 104, 128, 118, 106, 97, 83, 69, 56, 43
Offset: 1
Examples
Northwest corner: 1 2 3 5 7 9 14 22 4 6 8 12 19 30 47 67 10 15 24 38 58 77 95 112 11 18 24 45 65 84 102 118 13 21 32 50 70 89 106 122 16 25 40 60 79 97 114 130 17 27 44 64 83 101 117 132
References
- Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.
Links
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Crossrefs
Cf. A333028.
Programs
-
Mathematica
W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 500}]; u = Flatten[Position[t, 1]] ; v[n_, k_] := W[u[[n]], k]; g = Sort[Table[v[n - k + 1, k], {n, 20}, {k, n, 1, -1}] // Flatten] wo[n_, k_] := Length[Intersection[Range[v[n, k]], Complement[Range[1500], g]]] WP[n_, k_] := v[n, k] - wo[n, k]; TableForm[Table[WP[n, k], {n, 1, 15}, {k, 1, 10}]] (* A333029 array *) Table[WP[n - k + 1, k], {n, 16}, {k, n, 1, -1}] // Flatten (* A333029 sequence *)
Comments