This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333039 #20 Mar 19 2020 13:31:03 %S A333039 9,21,25,27,33,35,39,45,46,49,51,55,57,65,69,77,81,85,87,91,93,95,99, %T A333039 105,106,111,115,117,118,119,121,123,125,129,133,141,143,145,153,155, %U A333039 159,161,165,166,169,171,175,177,183,185,187,189,201 %N A333039 Composites m such that sigma(m) < sigma(m-1). %C A333039 As all primes p >= 5 satisfy sigma(p) < sigma(p-1) [see A333038], this sequence is reserved for composite numbers. %C A333039 This sequence is infinite because all squares of primes p, p >= 3 are terms. %C A333039 Composites such that sigma(m) = sigma(m-1) are in A231546. %D A333039 J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 620 pp. 82, 280, Ellipses Paris 2004 %H A333039 Robert Israel, <a href="/A333039/b333039.txt">Table of n, a(n) for n = 1..10000</a> %e A333039 sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140, hence composite 77 is a term. %e A333039 sigma(135) = 1+3+5+9+15+27+45+135 = 240 > sigma(134) = 1+2+67+134 = 204, hence composite 135 is not a term. %p A333039 filter:= m -> not isprime(m) and numtheory:-sigma(m) < numtheory:-sigma(m-1) : select(filter, [$1..500]); %t A333039 Select[Range[200], CompositeQ[#] && DivisorSigma[1, #] < DivisorSigma[1, # - 1] &] (* _Amiram Eldar_, Mar 12 2020 *) %o A333039 (PARI) isok(m) = (m>1) && !isprime(m) && (sigma(m) < sigma(m-1)); \\ _Michel Marcus_, Mar 15 2020 %Y A333039 Cf. A000203, A053222, A231546, A333038. %K A333039 nonn %O A333039 1,1 %A A333039 _Bernard Schott_, Mar 12 2020