cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333041 Odd numbers m such that sigma(m) > sigma(m-1).

Original entry on oeis.org

3, 63, 75, 135, 147, 195, 255, 315, 399, 405, 459, 483, 495, 525, 555, 567, 615, 627, 663, 675, 693, 735, 759, 765, 795, 819, 855, 915, 945, 975, 999, 1035, 1095, 1125, 1155, 1215, 1239, 1287, 1323, 1395, 1455, 1515, 1539, 1575, 1647, 1659, 1683, 1755, 1785, 1815, 1827, 1845, 1875
Offset: 1

Views

Author

Bernard Schott, Apr 14 2020

Keywords

Comments

The odd terms of A333038 [sigma(m) <= sigma(m-1)] represent about 95% of the data, so the odd integers that do not satisfy this relation are proposed here.
Except for 3, there are no prime powers in this sequence.
It appears that most of the terms are divisible by 3; the two smallest exceptions are 13475 and 17255 (see A323726).
Odd (and even) numbers such that sigma(m) = sigma(m-1) are in A231546.

Examples

			sigma(63) = 1+3+7+9+21+63 = 104 > sigma(62) = 1+2+31+62=96 and 63 is in the sequence.
sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140 and 77 is not a term.
		

Crossrefs

A323726 is a subsequence.
Apart from the first term, a subsequence of A334117.

Programs

  • Mathematica
    Select[2 * Range[1000] + 1, DivisorSigma[1, #] > DivisorSigma[1, # - 1] &] (* Amiram Eldar, Apr 14 2020 *)
  • PARI
    is(n)=n%2 && sigma(n)>sigma(n-1) \\ Charles R Greathouse IV, Apr 14 2020
Showing 1-1 of 1 results.