This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333042 #23 Feb 16 2024 05:42:08 %S A333042 1,24,1548,155744,19893054,2937661200,477691374152,83161733788992, %T A333042 15230338934722749,2900395347525785464,569718535329796732476, %U A333042 114759815105897160007392,23602808330272138320592494,4940203531008336735249385488,1049571237547858314991495867848 %N A333042 G.f.: exp(Sum_{k>=1} (4*k)!/k!^4 * x^k/k). %C A333042 From _Peter Bala_, Feb 08 2023: (Start) %C A333042 Let A(x) denote the o.g.f. of the sequence. The sequence defined by b(n) := [x^n] A(x)^n for n >= 1 begins [24, 3672, 703968, 149835864, 33911355024, 7993981771488, 1940145241321920, ...]. We conjecture that b(n) satisfies the supercongruences b(n*p^r) == b(n*p^(r-1)) ( mod p^(3*r) ) for prime p >= 5 and all positive integers n and r. %C A333042 More generally, for a positive integer m, set A_m(x) = exp( Sum_{n >= 1} (m*n)!/(n!^m) * x^n/n ) and define a sequence {b_m(n): n >= 1} by b_m(n) := [x^n] A_m(x)^n. Then we conjecture that b_m(n) is an integer sequence satisfying the same supercongruences. (End) %F A333042 a(n) ~ c * 4^(4*n)/n^(5/2), where c = exp(3*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 1] / 32) / (sqrt(2)*Pi^(3/2)) = 0.14496966... - _Vaclav Kotesovec_, Mar 06 2020, updated Feb 16 2024 %F A333042 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A008977(k) * a(n-k). - _Seiichi Manyama_, Feb 09 2024 %t A333042 CoefficientList[Series[Exp[Sum[(4*k)!/k!^4*x^k/k, {k, 1, 20}]], {x, 0, 20}], x] %t A333042 CoefficientList[Series[Exp[24*x*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 256*x]], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 09 2024 *) %Y A333042 Cf. A000108, A008977, A229451, A229452, A333043, A370294. %K A333042 nonn,easy %O A333042 0,2 %A A333042 _Vaclav Kotesovec_, Mar 06 2020