cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333044 Exponential self-convolution of A232690.

This page as a plain text file.
%I A333044 #13 Mar 08 2020 10:16:00
%S A333044 1,2,6,26,146,1014,8374,80282,875874,10719734,145422182,2166117018,
%T A333044 35143677106,616926078326,11650276119702,235510563023642,
%U A333044 5074238094097538,116081921186069622,2810093148179120710,71767508789469271322,1928439105298059705042
%N A333044 Exponential self-convolution of A232690.
%F A333044 E.g.f. satisfies: A(x) = exp(2/sqrt(A(x)) * Integral A(x)^(3/2) dx).
%F A333044 E.g.f. LambertW(-1, (4*x-3)*exp(-3))/(4*x-3).
%F A333044 a(n) = Sum_{k=0..n} binomial(n,k) * A232690(k) * A232690(n-k).
%e A333044 E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 146*x^4/4! + 1014*x^5/5! + ...
%t A333044 CoefficientList[Simplify[Assuming[Element[x, Reals], Series[LambertW[-1, (4*x - 3)*E^(-3)]/(4*x - 3), {x, 0, 20}]]], x] * Range[0, 20]!
%o A333044 (PARI) {a(n)=my(A = 1+2*x); for(i=1, n, A = exp(2/sqrt(A)*intformal(A^(3/2) + x*O(x^n)))); n!*polcoeff(A, n)}
%o A333044 for(n=0, 20, print1(a(n), ", "))
%Y A333044 Cf. A232690.
%K A333044 nonn
%O A333044 0,2
%A A333044 _Vaclav Kotesovec_, Mar 06 2020