This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333051 #8 Mar 09 2020 11:32:39 %S A333051 1,1,2,4,8,16,36,72,144,288,592,1184,2384,4768,9608,19248,38496,76992, %T A333051 154272,308544,617152,1234448,2470080,4940160,9880608,19761216, %U A333051 39527200,79054400,158109088,316218176,632456976,1264913952,2529827904,5059658176,10119393344,20238787264 %N A333051 a(1) = 1; a(n+1) = Sum_{d|n, gcd(d, n/d) = 1} a(n/d) * a(d). %H A333051 Robert Israel, <a href="/A333051/b333051.txt">Table of n, a(n) for n = 1..3320</a> %p A333051 a[1]:= 1: %p A333051 for n from 1 to 40 do %p A333051 P:= ifactors(n)[2]; %p A333051 k:= nops(P); %p A333051 t:= 0; %p A333051 for S in combinat:-powerset(k) do %p A333051 d:= mul(P[i][1]^P[i][2],i=S); %p A333051 t:= t + a[d]*a[n/d] %p A333051 od; %p A333051 a[n+1]:= t %p A333051 od: %p A333051 seq(a[i],i=1..41); # _Robert Israel_, Mar 09 2020 %t A333051 a[1] = 1; a[n_] := a[n] = Sum[If[GCD[(n - 1)/d, d] == 1, a[(n - 1)/d] a[d], 0], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 36}] %Y A333051 Cf. A038044, A122698. %K A333051 nonn %O A333051 1,3 %A A333051 _Ilya Gutkovskiy_, Mar 06 2020