cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333053 Numbers m such that min(d(m), d(m+1)) > min(d(k), d(k+1)) for all k < m, where d(m) is the number of divisors of m (A000005).

This page as a plain text file.
%I A333053 #4 Mar 06 2020 22:40:19
%S A333053 1,2,8,14,44,104,224,495,735,2024,2079,5264,5984,21735,126224,201824,
%T A333053 862784,1890944,2821455,6116175,7316000,14753024,23014719,38127375,
%U A333053 80061344,205466624,391738599,879207615,1794220064,3199900599,3809727999,16916370624
%N A333053 Numbers m such that min(d(m), d(m+1)) > min(d(k), d(k+1)) for all k < m, where d(m) is the number of divisors of m (A000005).
%C A333053 The corresponding values of min(d(a(n)), d(a(n)+1)) are 1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 20, 24, 32, 40, 48, 56, 64, 72, 80, 96, 108, 112, 120, 144, 160, 192, 224, 240, 256, 288, 320, ...
%e A333053 The values of min(d(k), d(k+1)) for k = 1, 2, ... 8 are 1, 2, 2, 2, 2, 2, 2, 3. The record values in this range, 1, 2 and 3, are obtained at k = 1, 2, and 8.
%t A333053 seq={}; dminmax = 0; d1 = 1; Do[d2 = DivisorSigma[0, n];dmin = Min[d1, d2]; If[dmin > dminmax, dminmax = dmin; AppendTo[seq, n-1]]; d1 = d2, {n, 2, 10^6}]; seq
%Y A333053 Cf. A000005, A002182, A123000, A175143, A333054.
%K A333053 nonn,more
%O A333053 1,2
%A A333053 _Amiram Eldar_, Mar 06 2020