A333054 Numbers m such that r(m) > r(k) for all k < m, where r(m) = min(sigma(m)/m, sigma(m+1)/(m+1)), and sigma(m) is the sum of divisors of m (A000203).
1, 2, 8, 14, 44, 104, 495, 944, 4095, 5775, 5984, 21735, 98175, 862784, 4096575, 7194824, 14753024, 879207615, 1969789184, 2275962975, 3968862975, 12567844575, 39566665215, 44803620225, 77510285775, 125617830975, 162902829375
Offset: 1
Examples
The values of min(sigma(k)/k, sigma(k+1)/(k+1)) for k = 1, 2, ... 8 are 1, 4/3, 4/3, 6/5, 6/5, 8/7, 8/7, 13/9. The record values in this range, 1, 4/3 and 13/9, are obtained at k = 1, 2, and 8.
Programs
-
Mathematica
seq={}; rminmax = 0; r1 = 1; Do[r2 = DivisorSigma[1, n]/n; rmin = Min[r1, r2]; If[rmin > rminmax, rminmax = rmin; AppendTo[seq, n-1]]; r1 = r2, {n, 2, 10^6}]; seq
Extensions
a(22)-a(27) from Amiram Eldar, Jan 02 2021
Comments