A333055 Numbers k such that k and k+1 have different (ordered) prime signatures and d(k) = d(k+1), where d(k) is the number of divisors of k (A000005).
26, 104, 189, 231, 242, 243, 344, 374, 663, 664, 735, 776, 782, 874, 903, 1015, 1029, 1095, 1106, 1112, 1161, 1208, 1269, 1335, 1374, 1544, 1625, 1809, 1832, 1917, 1952, 1970, 2055, 2133, 2241, 2247, 2264, 2343, 2344, 2504, 2655, 2696, 2726, 2781, 2874, 2936
Offset: 1
Keywords
Examples
26 is a term since 26 = 2 * 13 and 27 = 3^3 have different prime signatures, and d(26) = d(27) = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[3000], DivisorSigma[0, #] == DivisorSigma[0, #+1] && Sort[FactorInteger[#][[;;,2]]] != Sort[FactorInteger[#+1][[;;,2]]] &]
Comments