cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333070 Total number of nodes summed over all lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.

This page as a plain text file.
%I A333070 #19 Oct 24 2021 05:38:00
%S A333070 1,2,6,16,45,132,399,1240,3951,12870,42746,144420,495300,1721202,
%T A333070 6051150,21493136,77039070,278377452,1013187920,3711505380,
%U A333070 13675028346,50649452084,188482525039,704409735912,2642825539375,9950643710800,37587291143103,142403408032648
%N A333070 Total number of nodes summed over all lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.
%H A333070 Alois P. Heinz, <a href="/A333070/b333070.txt">Table of n, a(n) for n = 0..1000</a>
%H A333070 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%H A333070 Wikipedia, <a href="https://en.wikipedia.org/wiki/Motzkin_number">Motzkin number</a>
%F A333070 a(n) = (n+1) * A333069(n).
%F A333070 a(n) ~ c * 4^n / sqrt(n), where c = 0.0131789402414023971902275212293294628834887666310830183578424168829... - _Vaclav Kotesovec_, Oct 24 2021
%p A333070 b:= proc(x, y) option remember; `if`(x=0, 1, add(
%p A333070      `if`(x+j>y, b(x-1, y-j), 0), j=-1-y..min(1, y)))
%p A333070     end:
%p A333070 a:= n-> (n+1)*b(n, 0):
%p A333070 seq(a(n), n=0..30);
%t A333070 b[x_, y_] := b[x, y] = If[x == 0, 1, Sum[
%t A333070      If[x + j > y, b[x - 1, y - j], 0], {j, -1 - y, Min[1, y]}]];
%t A333070 a[n_] := (n+1) b[n, 0];
%t A333070 a /@ Range[0, 30] (* _Jean-François Alcover_, Apr 05 2021, after _Alois P. Heinz_ *)
%Y A333070 Cf. A333069, A333071, A333106, A333504.
%K A333070 nonn
%O A333070 0,2
%A A333070 _Alois P. Heinz_, Mar 06 2020