This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333072 #15 Apr 04 2020 16:29:43 %S A333072 1,2,6,6,30,10,70,70,210,168,1848,1848,18018,8580,2574,2574,102102, %T A333072 102102,831402,2771340,3233230,587860,43266496,117630786,162249360, %U A333072 145088370,145088370,2897310,672175920,672175920,18232771830,18232771830,44279588730,8886561060 %N A333072 Least k such that Sum_{i=1..n} k^i / i is a positive integer. %C A333072 Note that the denominator of (Sum_{i=1..n} k^i/i) - k^p/p can never be divisible by p, where n/2 < p <= n. Therefore, for the expression to be an integer, such p must divide k. Thus, a(n) = k is divisible by A055773(n). %H A333072 Chai Wah Wu, <a href="/A333072/b333072.txt">Table of n, a(n) for n = 1..61</a> %F A333072 a(n) <= A034386(n). %o A333072 (PARI) a(n) = {my(m = prod(i=primepi(n/2)+1, primepi(n), prime(i)), k = m); while (denominator(sum(i=2, n, k^i/i)) != 1, k += m); k; } %o A333072 (Python) %o A333072 from sympy import primorial, lcm %o A333072 def A333072(n): %o A333072 f = 1 %o A333072 for i in range(1,n+1): %o A333072 f = lcm(f,i) %o A333072 f, glist = int(f), [] %o A333072 for i in range(1,n+1): %o A333072 glist.append(f//i) %o A333072 m = 1 if n < 2 else primorial(n,nth=False)//primorial(n//2,nth=False) %o A333072 k = m %o A333072 while True: %o A333072 p,ki = 0, k %o A333072 for i in range(1,n+1): %o A333072 p = (p+ki*glist[i-1]) % f %o A333072 ki = (k*ki) % f %o A333072 if p == 0: %o A333072 return k %o A333072 k += m # _Chai Wah Wu_, Apr 04 2020 %Y A333072 Cf. A034386, A055773, A332734, A333196. %K A333072 nonn %O A333072 1,2 %A A333072 _Jinyuan Wang_, Mar 10 2020