This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333073 #9 Apr 02 2020 19:04:08 %S A333073 1,2,6,6,30,20,140,140,210,42,462,462,12012,3432,6006,6006,87516, %T A333073 87516,1108536,3048474,2586584,2586584,44618574,44618574,60843510, %U A333073 17160990,17160990,14263680,782050830,782050830,3806842470,3806842470,16830250920,16830250920 %N A333073 Least k such that Sum_{i=1..n} (-k)^i / i is a positive integer. %C A333073 Note that the denominator of (Sum_{i=1..n} (-k)^i/i) - (-k)^p/p can never be divisible by p, where n/2 < p <= n. Therefore, for the expression to be an integer, such p must divide k. Thus, a(n) = k is divisible by A055773(n). %H A333073 Chai Wah Wu, <a href="/A333073/b333073.txt">Table of n, a(n) for n = 1..60</a> %F A333073 a(n) <= A034386(n). %o A333073 (PARI) a(n) = {my(m = prod(i=primepi(n/2)+1, primepi(n), prime(i)), k = m); while(denominator(sum(i=2, n, (-k)^i/i)) != 1, k += m); k; } %o A333073 (Python) %o A333073 from sympy import primorial, lcm %o A333073 def A333073(n): %o A333073 f = 1 %o A333073 for i in range(1,n+1): %o A333073 f = lcm(f,i) %o A333073 f = int(f) %o A333073 glist = [] %o A333073 for i in range(1,n+1): %o A333073 glist.append(f//i) %o A333073 m = 1 if n < 2 else primorial(n,nth=False)//primorial(n//2,nth=False) %o A333073 k = m %o A333073 while True: %o A333073 p,ki = 0, -k %o A333073 for i in range(1,n+1): %o A333073 p = (p+ki*glist[i-1]) % f %o A333073 ki = (-k*ki) % f %o A333073 if p == 0: %o A333073 return k %o A333073 k += m # _Chai Wah Wu_, Apr 02 2020 %Y A333073 Cf. A034386, A055773, A333072, A333074. %K A333073 nonn %O A333073 1,2 %A A333073 _Jinyuan Wang_, Mar 31 2020