cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333075 The number of regions inside an octagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.

This page as a plain text file.
%I A333075 #18 May 14 2020 15:50:51
%S A333075 80,1488,9312,31552,83432,174816,339816,584176,953416,1463936,2173976,
%T A333075 3074784,4294080,5790816,7664880,9952944,12757088,16036096,20013696,
%U A333075 24577760,29973528,36161472,43314312,51334672
%N A333075 The number of regions inside an octagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
%C A333075 The terms are from numeric computation - no formula for a(n) is currently known.
%H A333075 Scott R. Shannon, <a href="/A333075/a333075.png">Octagon regions for n = 1</a>.
%H A333075 Scott R. Shannon, <a href="/A333075/a333075_1.png">Octagon regions for n = 2</a>.
%H A333075 Scott R. Shannon, <a href="/A333075/a333075_2.png">Octagon regions for n = 3</a>.
%H A333075 Scott R. Shannon, <a href="/A333075/a333075_3.png">Octagon regions for n = 4</a>.
%H A333075 Scott R. Shannon, <a href="/A333075/a333075_4.png">Octagon regions using random distance-based coloring for n = 2</a>.
%H A333075 Scott R. Shannon, <a href="/A333075/a333075_5.png">Octagon regions using random distance-based coloring for n = 3</a>.
%H A333075 Scott R. Shannon, <a href="/A333075/a333075_6.png">Octagon regions using random distance-based coloring for n = 4</a>.
%H A333075 Wikipedia, <a href="https://en.wikipedia.org/wiki/Octagon">Octagon</a>.
%Y A333075 Cf. A333076 (n-gons), A333109 (vertices), A333110 (edges), A007678, A092867, A331452, A331931.
%K A333075 nonn,more
%O A333075 1,1
%A A333075 _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 07 2020
%E A333075 a(7)-a(24) from _Lars Blomberg_, May 14 2020