This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333083 #28 Mar 09 2020 13:01:50 %S A333083 1,1,1,3,13,67,305,2359,16495,141643,1273691,15580299,152788607, %T A333083 2206382433,28916044241,399450183613 %N A333083 Number of permutations sigma of [n] such that all values k * sigma(k) for 1 <= k <= n are pairwise distinct. %H A333083 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %e A333083 In the n=3 case: %e A333083 | sigma(1),sigma(2),sigma(3) %e A333083 ----+--------------------------- %e A333083 1 | [1, 2, 3] %e A333083 2 | [2, 3, 1] %e A333083 3 | [3, 1, 2] %t A333083 Table[ Count[ Length@ Union[# Range@ n] & /@ Permutations@ Range@ n, n], {n, 0, 9}] (* _Giovanni Resta_, Mar 09 2020 *) %o A333083 (Ruby) %o A333083 def A(n) %o A333083 (1..n).to_a.permutation.select{|i| (1..n).map{|j| i[j - 1] * j}.uniq.size == n}.size %o A333083 end %o A333083 def A333083(n) %o A333083 (0..n).map{|i| A(i)} %o A333083 end %o A333083 p A333083(9) %o A333083 (PARI) a(n) = {my(nb=0); forperm([1..n], p, if (#Set(vector(n, k, k*p[k])) == n, nb++);); nb;} \\ _Michel Marcus_, Mar 09 2020 %Y A333083 Cf. A333082. %K A333083 nonn,more %O A333083 0,4 %A A333083 _Seiichi Manyama_, Mar 07 2020 %E A333083 a(13)-a(15) from _Giovanni Resta_, Mar 09 2020