This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333086 #10 Jan 08 2021 22:03:54 %S A333086 2,3,7,5,11,23,13,29,37,17,89,47,97,73,19,233,199,157,191,31,41,1597, %T A333086 521,1741,809,131,107,71,28657,2207,11933,421493,1453,173,487,79, %U A333086 514229,3571,50549,1103483,2351,733,2063,877,149,433494437,9349,214129,1785473 %N A333086 Array read by antidiagonals: row n consists of the primes in row n of the array A333028. %C A333086 The array shows, in order, the primes in the Wythoff array after deletion of all nonprimes. Every prime occurs exactly once; that is, every prime is uniquely expressible as F(k+1)*floor(n*tau) + (n-1)F(k), where tau = golden ratio (A001622), F = A000045 (Fibonacci numbers), and n and k are positive integers. We assume as true the conjecture that each row is infinite. %e A333086 Northwest corner: %e A333086 2 3 5 13 89 233 %e A333086 7 11 29 47 199 521 %e A333086 23 37 97 157 1741 11933 %e A333086 17 73 191 809 421493 1103483 %e A333086 19 31 131 1453 2351 42187 %e A333086 41 107 173 733 55717 236021 %e A333086 Row 22 begins with 30631, 2187696161008162875319987. %t A333086 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A333086 t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 200}]; %t A333086 u = Flatten[Position[t, 1]] ; v[n_, k_] := W[u[[n]], k]; %t A333086 p[n_] := Table[v[n, k], {k, 1, 1000}]; %t A333086 TableForm[Table[Select[p[n], PrimeQ], {n, 1, 100}]] %Y A333086 Cf. A000040, A333028, A333087. %K A333086 nonn,tabl,hard %O A333086 1,1 %A A333086 _Clark Kimberling_, Mar 10 2020