This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333087 #6 Mar 10 2020 23:49:36 %S A333087 1,2,4,3,5,9,6,10,12,7,24,15,25,21,8,51,46,37,43,11,13,251,98,271,140, %T A333087 32,28,20,3121,329,1430,35505,231,40,93,22,42613,500,5185,85968,349, %U A333087 130,311,151,35 %N A333087 Array (p(n,k)) read by antidiagonals: p(n,k) is the index of the prime in position (n,k) in the array A333086. %C A333087 As a sequence, this is a permutation of the positive integers. %e A333087 Northwest corner: %e A333087 1 2 3 6 24 51 %e A333087 4 5 10 15 46 98 %e A333087 9 12 25 37 271 1430 %e A333087 7 21 43 140 35505 85968 %e A333087 8 11 32 231 349 4410 %e A333087 13 28 40 130 5655 20908 %e A333087 The 4th prime is 7, which occurs in the position (2,1) in A333086, so that p(2,1) = 4. %t A333087 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A333087 t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 100}]; %t A333087 u = Flatten[Position[t, 1]] ; v[n_, k_] := W[u[[n]], k]; %t A333087 p[n_] := Table[v[n, k], {k, 1, 40}]; %t A333087 TableForm[Table[Select[p[n], PrimeQ], {n, 1, 10}]] %t A333087 t1 = Table[PrimePi[Select[p[n], PrimeQ]], {n, 1, 10}] %t A333087 tt[n_, k_] := t1[[n]][[k]]; %t A333087 Table[tt[n, k], {n, 1, 10}, {k, 1, 10}] (* A333087 array *) %t A333087 ttt = Table[tt[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* A333087 sequence *) %Y A333087 Cf. A000040, A099000 (row 1), A333028, A333086. %K A333087 nonn,tabl,hard %O A333087 1,2 %A A333087 _Clark Kimberling_, Mar 10 2020