This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333129 #25 Sep 12 2024 14:45:02 %S A333129 1,1,2,3,2,10,6,14,6,6,30,66,30,78,42,30,30,510,210,570,210,210,330, %T A333129 690,2310,210,2730,210,2310,6090,30030,6510,2730,2310,39270,2310, %U A333129 46410,85470,3990,30030,39270,94710,570570,1291290,30030,30030,903210,1411410,746130 %N A333129 Product of all distinct least part primes from all partitions of n into prime parts. %C A333129 For all n, omega(a(n)) = Omega(a(n)). The prime factorization of each term gives the least part primes of all partitions of n into prime parts. %C A333129 Product of all terms in row n of A333238. - _Alois P. Heinz_, Mar 16 2020 %H A333129 Alois P. Heinz, <a href="/A333129/b333129.txt">Table of n, a(n) for n = 0..6269</a> %e A333129 a(2) = 2 because [2] is the only prime partition of 2. a(5) = 10 because the prime partitions of 5 are [2,3] and [5], so the products of all distinct least part primes is 2*5 = 10. %p A333129 b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q-> %p A333129 add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p)))) %p A333129 end: %p A333129 a:= n-> (p-> mul(`if`(coeff(p, x, i)>0, i, 1), i=2..n))(b(n, 2, x)): %p A333129 seq(a(n), n=0..55); # _Alois P. Heinz_, Mar 12 2020 %t A333129 a[0] = 1; a[n_] := Times @@ Union[Min /@ IntegerPartitions[n, All, Prime[ Range[PrimePi[n]]]]]; %t A333129 a /@ Range[0, 55] (* _Jean-François Alcover_, Nov 01 2020 *) %Y A333129 Cf. A000040, A000607, A001221, A001222, A005117, A333238. %K A333129 nonn %O A333129 0,3 %A A333129 _David James Sycamore_, Mar 08 2020