cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333142 Triangle read by rows: T(n, k) = qStirling1(n, k, q) for q = 2, with 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 5, 1, 1, 50, 42, 12, 1, 1, 751, 680, 222, 27, 1, 1, 23282, 21831, 7562, 1059, 58, 1, 1, 1466767, 1398635, 498237, 74279, 4713, 121, 1, 1, 186279410, 179093412, 64674734, 9931670, 672830, 20080, 248, 1
Offset: 0

Views

Author

Peter Luschny, Mar 09 2020

Keywords

Examples

			Triangle starts:
[0] 1
[1] 1, 1
[2] 1, 2,         1
[3] 1, 7,         5,         1
[4] 1, 50,        42,        12,       1
[5] 1, 751,       680,       222,      27,      1
[6] 1, 23282,     21831,     7562,     1059,    58,     1
[7] 1, 1466767,   1398635,   498237,   74279,   4713,   121,   1
[8] 1, 186279410, 179093412, 64674734, 9931670, 672830, 20080, 248, 1
		

Crossrefs

T(n,n-1) = A000325(n).
Cf. A333143.

Programs

  • Maple
    qStirling1 := proc(n, k, q) option remember; with(QDifferenceEquations):
    if n = 0 then return 0^k fi; if k = 0 then return n^0 fi;
    qStirling1(n-1, k-1, p) + QBrackets(n-1, p)*qStirling1(n-1, k, p);
    subs(p = q, expand(%)) end:
    seq(seq(qStirling1(n, k, 2), k=0..n), n=0..9);

Formula

qStirling1(n, k, q) = qStirling1(n-1, k-1, q) + qBrackets(n-1, q)*qStirling1(n-1, k, q) with boundary values 0^k if n = 0 and n^0 if k = 0.
Note that also a second definition is used in the literature. The two versions differ by a factor of q^(n-k).