cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333143 Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = 3, with 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 18, 1, 1, 85, 255, 58, 1, 1, 341, 3400, 2575, 179, 1, 1, 1365, 44541, 106400, 24234, 543, 1, 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1, 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
Offset: 0

Views

Author

Peter Luschny, Mar 09 2020

Keywords

Examples

			[0] 1
[1] 1, 1
[2] 1, 5,     1
[3] 1, 21,    18,      1
[4] 1, 85,    255,     58,        1
[5] 1, 341,   3400,    2575,      179,       1
[6] 1, 1365,  44541,   106400,    24234,     543,      1
[7] 1, 5461,  580398,  4300541,   3038714,   221886,   1636,    1
[8] 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
		

Crossrefs

T(n, 1) = A002450(n), T(n, n-1) = A000340(n).
Cf. A139382 (q=2), A333142.

Programs

  • Maple
    qStirling2 := proc(n, k, q) option remember; with(QDifferenceEquations):
    if n = 0 then return 0^k fi; if k = 0 then return n^0 fi;
    qStirling2(n-1, k-1, p) + QBrackets(k+1, p)*qStirling2(n-1, k, p);
    subs(p = q, expand(%)) end:
    seq(seq(qStirling2(n, k, 3), k=0..n), n=0..9);
  • Mathematica
    qStirling2[n_, k_, q_] /; 1 <= k <= n := (* q^(k-1) *) qStirling2[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}] qStirling2[n - 1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[qStirling2[n + 1, k + 1, 3], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2020 *)

Formula

qStirling2(n, k, q) = qStirling2(n-1, k-1, q) + qBrackets(k+1, q)*qStirling2(n-1, k, q) with boundary values 0^k if n = 0 and n^0 if k = 0.
Note that also a second definition is used in the literature which has an additional factor q^k attached to the first term in the equation above. The two versions differ by a factor of q^binomial(k,2).