This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333145 #15 Feb 16 2025 08:33:59 %S A333145 1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,3,1,2,2,2,1,2,1,2,1,2,1,4,1,1,2,2, %T A333145 2,3,1,2,2,2,1,4,1,2,2,2,1,2,1,3,2,2,1,4,2,2,2,2,1,4,1,2,2,1,2,4,1,2, %U A333145 2,4,1,3,1,2,3,2,2,4,1,2,1,2,1,4,2,2,2 %N A333145 Number of unimodal negated permutations of the multiset of prime indices of n. %C A333145 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A333145 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %C A333145 Also permutations of the multiset of prime indices of n avoiding the patterns (1,2,1), (1,3,2), and (2,3,1). %C A333145 Also the number divisors of n not divisible by the least prime factor of n. The other divisors are counted by A069157. - _Gus Wiseman_, Apr 12 2022 %H A333145 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %H A333145 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a> %F A333145 a(n) + A333146(n) = A008480(n). %F A333145 a(n) = A000005(A028234(n)). - _Gus Wiseman_, Apr 14 2022 %F A333145 a(n) = A000005(n) - A069157(n). - _Gus Wiseman_, Apr 14 2022 %e A333145 The a(n) permutations for n = 2, 6, 18, 30, 90, 162, 210, 450: %e A333145 (1) (12) (122) (123) (1223) (12222) (1234) (12233) %e A333145 (21) (212) (213) (2123) (21222) (2134) (21233) %e A333145 (221) (312) (2213) (22122) (3124) (22133) %e A333145 (321) (3122) (22212) (3214) (31223) %e A333145 (3212) (22221) (4123) (32123) %e A333145 (3221) (4213) (32213) %e A333145 (4312) (33122) %e A333145 (4321) (33212) %e A333145 (33221) %t A333145 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A333145 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A333145 Table[Length[Select[Permutations[primeMS[n]],unimodQ[-#]&]],{n,30}] %Y A333145 Dominated by A008480. %Y A333145 The complementary divisors are counted by A069157. %Y A333145 The non-negated version is A332288. %Y A333145 A more interesting version is A332741. %Y A333145 The complement is counted by A333146. %Y A333145 A001523 counts unimodal compositions. %Y A333145 A007052 counts unimodal normal sequences. %Y A333145 A028233 gives the highest power of the least prime factor, quotient A028234. %Y A333145 A332578 counts compositions whose negation is unimodal. %Y A333145 A332638 counts partitions with unimodal negated run-lengths. %Y A333145 A332642 lists numbers with non-unimodal negated unsorted prime signature. %Y A333145 Cf. A056239, A112798, A115981, A124010, A328509, A332283, A332294, A332639, A332669, A332670, A332671. %K A333145 nonn %O A333145 1,6 %A A333145 _Gus Wiseman_, Mar 09 2020