This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333147 #11 Feb 16 2025 08:33:59 %S A333147 1,1,1,3,3,5,7,9,11,15,19,23,29,35,43,53,63,75,91,107,127,151,177,207, %T A333147 243,283,329,383,443,511,591,679,779,895,1023,1169,1335,1519,1727, %U A333147 1963,2225,2519,2851,3219,3631,4095,4607,5179,5819,6527,7315,8193,9163 %N A333147 Number of compositions of n that are either strictly increasing or strictly decreasing. %C A333147 A composition of n is a finite sequence of positive integers summing to n. %H A333147 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a> %F A333147 a(n) = 2*A000009(n) - 1. %e A333147 The a(1) = 1 through a(9) = 15 compositions: %e A333147 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A333147 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) %e A333147 (2,1) (3,1) (2,3) (2,4) (2,5) (2,6) (2,7) %e A333147 (3,2) (4,2) (3,4) (3,5) (3,6) %e A333147 (4,1) (5,1) (4,3) (5,3) (4,5) %e A333147 (1,2,3) (5,2) (6,2) (5,4) %e A333147 (3,2,1) (6,1) (7,1) (6,3) %e A333147 (1,2,4) (1,2,5) (7,2) %e A333147 (4,2,1) (1,3,4) (8,1) %e A333147 (4,3,1) (1,2,6) %e A333147 (5,2,1) (1,3,5) %e A333147 (2,3,4) %e A333147 (4,3,2) %e A333147 (5,3,1) %e A333147 (6,2,1) %t A333147 Table[2*PartitionsQ[n]-1,{n,0,30}] %Y A333147 Strict partitions are A000009. %Y A333147 Unimodal compositions are A001523 (strict: A072706). %Y A333147 Strict compositions are A032020. %Y A333147 The non-strict version appears to be A329398. %Y A333147 Partitions with incr. or decr. run-lengths are A332745 (strict: A333190). %Y A333147 Compositions with incr. or decr. run-lengths are A332835 (strict: A333191). %Y A333147 The complement is counted by A333149 (non-strict: A332834). %Y A333147 Cf. A059204, A072705, A072707, A115981, A332285, A332578, A332746, A332831, A332833, A332874, A333150. %K A333147 nonn %O A333147 0,4 %A A333147 _Gus Wiseman_, May 16 2020