This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333150 #11 Apr 17 2021 03:42:16 %S A333150 1,1,1,3,3,5,8,10,13,18,26,31,42,52,68,89,110,136,173,212,262,330,398, %T A333150 487,592,720,864,1050,1262,1508,1804,2152,2550,3037,3584,4236,5011, %U A333150 5880,6901,8095,9472,11048,12899,14996,17436,20261,23460,27128,31385,36189 %N A333150 Number of strict compositions of n whose non-adjacent parts are strictly decreasing. %C A333150 A composition of n is a finite sequence of positive integers summing to n. It is strict if there are no repeated parts. %H A333150 Andrew Howroyd, <a href="/A333150/b333150.txt">Table of n, a(n) for n = 0..1000</a> %F A333150 G.f.: Sum_{k>=0} Fibonacci(k+1) * [y^k](Product_{j>=1} 1 + y*x^j). - _Andrew Howroyd_, Apr 16 2021 %e A333150 The a(1) = 1 through a(8) = 13 compositions: %e A333150 (1) (2) (3) (4) (5) (6) (7) (8) %e A333150 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) %e A333150 (2,1) (3,1) (2,3) (2,4) (2,5) (2,6) %e A333150 (3,2) (4,2) (3,4) (3,5) %e A333150 (4,1) (5,1) (4,3) (5,3) %e A333150 (2,3,1) (5,2) (6,2) %e A333150 (3,1,2) (6,1) (7,1) %e A333150 (3,2,1) (2,4,1) (2,5,1) %e A333150 (4,1,2) (3,4,1) %e A333150 (4,2,1) (4,1,3) %e A333150 (4,3,1) %e A333150 (5,1,2) %e A333150 (5,2,1) %e A333150 For example, (3,5,1,2) is such a composition, because the non-adjacent pairs of parts are (3,1), (3,2), (5,2), all of which are strictly decreasing. %t A333150 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{___,x_,__,y_,___}/;y>x]&]],{n,0,10}] %o A333150 (PARI) seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=0, n, fibonacci(k+1) * polcoef(p,k,y)))} \\ _Andrew Howroyd_, Apr 16 2021 %Y A333150 The case of permutations appears to be A000045(n + 1). %Y A333150 Unimodal strict compositions are A072706. %Y A333150 A version for ordered set partitions is A332872. %Y A333150 The non-strict version is A333148. %Y A333150 Cf. A001523, A028859, A056242, A059204, A107429, A115981, A329398, A332578, A332669, A332673, A332724, A332834, A333193. %K A333150 nonn %O A333150 0,4 %A A333150 _Gus Wiseman_, May 16 2020