A333190 Number of integer partitions of n whose run-lengths are either strictly increasing or strictly decreasing.
1, 1, 2, 2, 4, 5, 7, 10, 13, 15, 21, 26, 29, 39, 49, 50, 68, 80, 92, 109, 129, 142, 181, 201, 227, 262, 317, 343, 404, 456, 516, 589, 677, 742, 870, 949, 1077, 1207, 1385, 1510, 1704, 1895, 2123, 2352, 2649, 2877, 3261, 3571, 3966, 4363, 4873, 5300, 5914, 6466
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (221) (33) (322) (44) (211) (311) (222) (331) (332) (1111) (2111) (411) (511) (422) (11111) (3111) (2221) (611) (21111) (4111) (2222) (111111) (22111) (5111) (31111) (22211) (211111) (41111) (1111111) (221111) (311111) (2111111) (11111111)
Crossrefs
The non-strict version is A332745.
The generalization to compositions is A333191.
Partitions with distinct run-lengths are A098859.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Partitions with unimodal run-lengths are A332280.
Partitions whose run-lengths are not increasing nor decreasing are A332641.
Compositions whose run-lengths are unimodal or co-unimodal are A332746.
Compositions that are neither increasing nor decreasing are A332834.
Strictly increasing or strictly decreasing compositions are A333147.
Compositions with strictly increasing run-lengths are A333192.
Numbers with strictly increasing prime multiplicities are A334965.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Or[Less@@Length/@Split[#],Greater@@Length/@Split[#]]&]],{n,0,30}]