cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333192 Number of compositions of n with strictly increasing run-lengths.

This page as a plain text file.
%I A333192 #10 May 18 2020 19:11:03
%S A333192 1,1,2,2,4,5,7,10,14,16,24,31,37,51,67,76,103,129,158,199,242,293,370,
%T A333192 450,538,652,799,953,1147,1376,1635,1956,2322,2757,3271,3845,4539,
%U A333192 5336,6282,7366,8589,10046,11735,13647,15858,18442,21354,24716,28630,32985
%N A333192 Number of compositions of n with strictly increasing run-lengths.
%C A333192 A composition of n is a finite sequence of positive integers summing to n.
%H A333192 Giovanni Resta, <a href="/A333192/b333192.txt">Table of n, a(n) for n = 0..1000</a>
%e A333192 The a(1) = 1 through a(8) = 14 compositions:
%e A333192   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A333192        (11)  (111)  (22)    (122)    (33)      (133)      (44)
%e A333192                     (211)   (311)    (222)     (322)      (233)
%e A333192                     (1111)  (2111)   (411)     (511)      (422)
%e A333192                             (11111)  (3111)    (1222)     (611)
%e A333192                                      (21111)   (4111)     (2222)
%e A333192                                      (111111)  (22111)    (5111)
%e A333192                                                (31111)    (11222)
%e A333192                                                (211111)   (41111)
%e A333192                                                (1111111)  (122111)
%e A333192                                                           (221111)
%e A333192                                                           (311111)
%e A333192                                                           (2111111)
%e A333192                                                           (11111111)
%e A333192 For example, the composition (1,2,2,1,1,1) has run-lengths (1,2,3), so is counted under a(8).
%t A333192 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Length/@Split[#]&]],{n,0,15}]
%t A333192 b[n_, lst_, v_] := b[n, lst, v] = If[n == 0, 1, If[n <= lst, 0, Sum[If[k == v, 0, b[n - k pz, pz, k]], {pz, lst + 1, n}, {k, Floor[n/pz]}]]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 50] (* _Giovanni Resta_, May 18 2020 *)
%Y A333192 The case of partitions is A100471.
%Y A333192 The non-strict version is A332836.
%Y A333192 Strictly increasing compositions are A000009.
%Y A333192 Unimodal compositions are A001523.
%Y A333192 Strict compositions are A032020.
%Y A333192 Partitions with strictly increasing run-lengths are A100471.
%Y A333192 Partitions with strictly decreasing run-lengths are A100881.
%Y A333192 Compositions with equal run-lengths are A329738.
%Y A333192 Compositions whose run-lengths are unimodal are A332726.
%Y A333192 Compositions with strictly increasing or decreasing run-lengths are A333191.
%Y A333192 Numbers with strictly increasing prime multiplicities are A334965.
%Y A333192 Cf. A072706, A098859, A100882, A100883, A304686, A329744, A329766, A332726, A332833, A332834, A332835, A333147, A333149, A333190.
%K A333192 nonn
%O A333192 0,3
%A A333192 _Gus Wiseman_, May 17 2020
%E A333192 Terms a(26) and beyond from _Giovanni Resta_, May 18 2020