This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333196 #11 Apr 23 2025 19:40:30 %S A333196 1,2,6,6,30,10,70,70,210,210,2310,2310,30030,30030,30030,30030,510510, %T A333196 510510,9699690,1939938,646646,646646,14872858,44618574,223092870, %U A333196 223092870,223092870,223092870,6469693230,6469693230,200560490130,200560490130,18232771830 %N A333196 Least k such that Sum_{i=1..n} k^n / i is a positive integer. %C A333196 Least k > 0 such that k^n/A002805(n) is an integer. %H A333196 Chai Wah Wu, <a href="/A333196/b333196.txt">Table of n, a(n) for n = 1..2370</a> %F A333196 a(n) = A007947(A002805(n)). %e A333196 For n = 6, the denominator of Sum_{i=1..6} 1/i is 20 = 2^2*5, so a(7) = 2*5 = 10. %p A333196 a:= n-> mul(i[1], i=ifactors(denom(harmonic(n)))[2]): %p A333196 seq(a(n), n=1..33); # _Alois P. Heinz_, Apr 23 2025 %o A333196 (PARI) a(n) = factorback(factorint(denominator(sum(i=2, n, 1/i)))[, 1]); %o A333196 (Python) %o A333196 from functools import reduce %o A333196 from operator import mul %o A333196 from sympy import harmonic, factorint %o A333196 def A333196(n): %o A333196 fs = factorint(harmonic(n).q) %o A333196 return 1 if len(fs) == 0 else reduce(mul,(p**(fs[p]//n + 1 if fs[p] % n else fs[p]//n) for p in fs)) # _Chai Wah Wu_, Apr 03 2020 %Y A333196 Cf. A007947, A001008, A002805, A330030, A333072. %K A333196 nonn %O A333196 1,2 %A A333196 _Jinyuan Wang_, Mar 10 2020