cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333200 Rectangular array read by antidiagonals: row n shows the primes p(k) such that p(k) = p(k-1) + 2n, with 2 prefixed to row 1.

Original entry on oeis.org

2, 3, 11, 5, 17, 29, 7, 23, 37, 97, 13, 41, 53, 367, 149, 19, 47, 59, 397, 191, 211, 31, 71, 67, 409, 251, 223, 127, 43, 83, 79, 457, 293, 479, 307, 1847, 61, 101, 89, 487, 347, 521, 331, 1949, 541, 73, 107, 137, 499, 419, 631, 787, 2129, 1087, 907, 103, 113
Offset: 1

Views

Author

Clark Kimberling, May 09 2020

Keywords

Comments

Every prime occurs exactly once.
Row 1: A001632, except for initial term
Row 2: A046132
Row 3: A031925
Row 4: A031927
Row 5: A031929
Column 1: A006512, beginning with 5,7,13

Examples

			Northwest corner:
    2   3     5    7   13   19   31   43   61   73  103
   11   17   23   41   47   71   83  101  107  113  131
   29   37   53   59   67   79   89  137  157  163  173
   97  367  397  409  457  487  499  691  709  727  751
  149  191  251  293  347  419  431  557  587  641  701
		

Crossrefs

Programs

  • Mathematica
    z = 2700; p = Prime[Range[z]];
    r[n_] := Select[Range[z], p[[#]] - p[[# - 1]] == 2 n &]; r[1] = Join[{1, 2}, r[1]];
    TableForm[Table[Prime[r[n]], {n, 1, 18}]]  (* A333200, array *)
    TableForm[Table[r[n], {n, 1, 18}]] (* A333201, array *)
    Table[Prime[r[n - k + 1][[k]]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333200, sequence *)
    Table[r[n - k + 1][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333201, sequence *)