A333200 Rectangular array read by antidiagonals: row n shows the primes p(k) such that p(k) = p(k-1) + 2n, with 2 prefixed to row 1.
2, 3, 11, 5, 17, 29, 7, 23, 37, 97, 13, 41, 53, 367, 149, 19, 47, 59, 397, 191, 211, 31, 71, 67, 409, 251, 223, 127, 43, 83, 79, 457, 293, 479, 307, 1847, 61, 101, 89, 487, 347, 521, 331, 1949, 541, 73, 107, 137, 499, 419, 631, 787, 2129, 1087, 907, 103, 113
Offset: 1
Examples
Northwest corner: 2 3 5 7 13 19 31 43 61 73 103 11 17 23 41 47 71 83 101 107 113 131 29 37 53 59 67 79 89 137 157 163 173 97 367 397 409 457 487 499 691 709 727 751 149 191 251 293 347 419 431 557 587 641 701
Programs
-
Mathematica
z = 2700; p = Prime[Range[z]]; r[n_] := Select[Range[z], p[[#]] - p[[# - 1]] == 2 n &]; r[1] = Join[{1, 2}, r[1]]; TableForm[Table[Prime[r[n]], {n, 1, 18}]] (* A333200, array *) TableForm[Table[r[n], {n, 1, 18}]] (* A333201, array *) Table[Prime[r[n - k + 1][[k]]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333200, sequence *) Table[r[n - k + 1][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333201, sequence *)
Comments