A333201 Rectangular array read by antidiagonals: row n shows the numbers k such that p(k) = prime(k-1) + 2n, where prime(k) = k-th prime, with 1 prefixed to row 1.
1, 2, 5, 3, 7, 10, 4, 9, 12, 25, 6, 13, 16, 73, 35, 8, 15, 17, 78, 43, 47, 11, 20, 19, 80, 54, 48, 31, 14, 23, 22, 88, 62, 92, 63, 283, 18, 26, 24, 93, 69, 98, 67, 296, 100, 21, 28, 33, 95, 81, 115, 138, 320, 181, 155, 27, 30, 37, 125, 83, 122, 147, 332, 206
Offset: 1
Examples
Northwest corner: 1 2 3 4 6 8 11 14 18 21 5 7 9 13 15 20 23 26 28 30 10 12 16 17 19 22 24 33 37 38 25 73 78 80 88 93 95 125 127 129 35 43 54 62 69 81 83 102 107 116
Programs
-
Mathematica
z = 2700; p = Prime[Range[z]]; r[n_] := Select[Range[z], p[[#]] - p[[# - 1]] == 2 n &]; r[1] = Join[{1, 2}, r[1]]; TableForm[Table[Prime[r[n]], {n, 1, 18}]] (* A333200, array *) TableForm[Table[r[n], {n, 1, 18}]] (* A333201, array *) Table[Prime[r[n - k + 1][[k]]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333200, sequence *) Table[r[n - k + 1][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A333201, sequence *)
Comments