This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333213 #8 Jan 19 2023 22:35:46 %S A333213 1,0,1,0,1,1,0,2,1,1,0,2,4,1,1,0,3,6,5,1,1,0,4,10,10,6,1,1,0,5,17,20, %T A333213 13,7,1,1,0,6,27,38,31,16,8,1,1,0,8,40,69,67,42,19,9,1,1,0,10,58,123, %U A333213 132,101,54,22,10,1,1 %N A333213 Triangle read by rows where T(n,k) is the number of compositions of n with k adjacent terms that are equal or increasing (weak ascents) n >= 0, 0 <= k <= n. %C A333213 A composition of n is a finite sequence of positive integers summing to n. %C A333213 Also the number of compositions of n with k + 1 maximal strictly decreasing subsequences. %C A333213 Also the number of compositions of n with k adjacent terms that are equal or decreasing (weak descents). %H A333213 Andrew Howroyd, <a href="/A333213/b333213.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %e A333213 Triangle begins: %e A333213 1 %e A333213 0 1 %e A333213 0 1 1 %e A333213 0 2 1 1 %e A333213 0 2 4 1 1 %e A333213 0 3 6 5 1 1 %e A333213 0 4 10 10 6 1 1 %e A333213 0 5 17 20 13 7 1 1 %e A333213 0 6 27 38 31 16 8 1 1 %e A333213 0 8 40 69 67 42 19 9 1 1 %e A333213 0 10 58 123 132 101 54 22 10 1 1 %e A333213 0 12 86 202 262 218 139 67 25 11 1 1 %e A333213 0 15 121 332 484 467 324 182 81 28 12 1 1 %e A333213 Row n = 6 counts the following compositions: %e A333213 (6) (15) (114) (1113) (11112) (111111) %e A333213 (42) (24) (123) (1122) %e A333213 (51) (33) (222) (11121) %e A333213 (321) (132) (1131) (11211) %e A333213 (141) (1212) (12111) %e A333213 (213) (1221) (21111) %e A333213 (231) (1311) %e A333213 (312) (2112) %e A333213 (411) (2211) %e A333213 (2121) (3111) %t A333213 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#,#1>#2&]]==k&]],{n,0,12},{k,0,n}] %o A333213 (PARI) T(n)={my(M=matrix(n+1, n+1)); M[1,1]=x; for(n=1, n, for(k=1, n, M[1+n,1+k] = M[1+n,1+k-1] + x*M[1+n-k, 1+n-k] + (1-x)*M[1+n-k, 1+min(k-1, n-k)])); M[1,1]=1; vector(n+1, i, Vecrev(M[i,i]))} %o A333213 { my(A=T(12)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 19 2023 %Y A333213 Compositions by length are A007318. %Y A333213 The case of reversed partitions (instead of compositions) is A008284. %Y A333213 The version counting equal adjacencies is A106356. %Y A333213 The case of partitions (instead of compositions) is A133121. %Y A333213 The version counting unequal adjacencies is A238279. %Y A333213 The strict/strong version is A238343. %Y A333213 Cf. A072704, A107429, A124764, A124769, A329744, A332875, A333230. %K A333213 nonn,tabl %O A333213 0,8 %A A333213 _Gus Wiseman_, Mar 14 2020