cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333217 Numbers k such that the k-th composition in standard order covers an initial interval of positive integers.

This page as a plain text file.
%I A333217 #18 Apr 04 2025 10:20:15
%S A333217 0,1,3,5,6,7,11,13,14,15,21,22,23,26,27,29,30,31,37,38,41,43,44,45,46,
%T A333217 47,50,52,53,54,55,58,59,61,62,63,75,77,78,83,85,86,87,89,90,91,92,93,
%U A333217 94,95,101,102,105,106,107,108,109,110,111,114,116,117,118
%N A333217 Numbers k such that the k-th composition in standard order covers an initial interval of positive integers.
%C A333217 The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
%H A333217 Robert Price, <a href="/A333217/b333217.txt">Table of n, a(n) for n = 1..1008</a>
%e A333217 The sequence of terms together with the corresponding compositions begins:
%e A333217     0: ()              37: (3,2,1)           75: (3,2,1,1)
%e A333217     1: (1)             38: (3,1,2)           77: (3,1,2,1)
%e A333217     3: (1,1)           41: (2,3,1)           78: (3,1,1,2)
%e A333217     5: (2,1)           43: (2,2,1,1)         83: (2,3,1,1)
%e A333217     6: (1,2)           44: (2,1,3)           85: (2,2,2,1)
%e A333217     7: (1,1,1)         45: (2,1,2,1)         86: (2,2,1,2)
%e A333217    11: (2,1,1)         46: (2,1,1,2)         87: (2,2,1,1,1)
%e A333217    13: (1,2,1)         47: (2,1,1,1,1)       89: (2,1,3,1)
%e A333217    14: (1,1,2)         50: (1,3,2)           90: (2,1,2,2)
%e A333217    15: (1,1,1,1)       52: (1,2,3)           91: (2,1,2,1,1)
%e A333217    21: (2,2,1)         53: (1,2,2,1)         92: (2,1,1,3)
%e A333217    22: (2,1,2)         54: (1,2,1,2)         93: (2,1,1,2,1)
%e A333217    23: (2,1,1,1)       55: (1,2,1,1,1)       94: (2,1,1,1,2)
%e A333217    26: (1,2,2)         58: (1,1,2,2)         95: (2,1,1,1,1,1)
%e A333217    27: (1,2,1,1)       59: (1,1,2,1,1)      101: (1,3,2,1)
%e A333217    29: (1,1,2,1)       61: (1,1,1,2,1)      102: (1,3,1,2)
%e A333217    30: (1,1,1,2)       62: (1,1,1,1,2)      105: (1,2,3,1)
%e A333217    31: (1,1,1,1,1)     63: (1,1,1,1,1,1)    106: (1,2,2,2)
%t A333217 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A333217 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
%t A333217 Select[Range[0,100],normQ[stc[#]]&]
%Y A333217 Sequences covering an initial interval are counted by A000670.
%Y A333217 Composition in standard order are A066099.
%Y A333217 The case of strictly increasing initial intervals is A164894.
%Y A333217 The case of strictly decreasing initial intervals is A246534.
%Y A333217 The case of permutations is A333218.
%Y A333217 The weakly increasing version is A333379.
%Y A333217 The weakly decreasing version is A333380.
%Y A333217 Cf. A000120, A029931, A048793, A070939, A225620, A228351, A233564, A272919, A333219, A333220.
%K A333217 nonn
%O A333217 1,3
%A A333217 _Gus Wiseman_, Mar 15 2020