This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333218 #9 Mar 17 2020 21:18:03 %S A333218 0,1,5,6,37,38,41,44,50,52,549,550,553,556,562,564,581,582,593,600, %T A333218 610,616,649,652,657,664,708,712,786,788,802,808,836,840,16933,16934, %U A333218 16937,16940,16946,16948,16965,16966,16977,16984,16994,17000,17033,17036,17041 %N A333218 Numbers k such that the k-th composition in standard order is a permutation (of an initial interval). %C A333218 The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. %e A333218 The sequence of terms together with their corresponding compositions begins: %e A333218 0: () 593: (3,2,4,1) 16937: (5,4,2,3,1) %e A333218 1: (1) 600: (3,2,1,4) 16940: (5,4,2,1,3) %e A333218 5: (2,1) 610: (3,1,4,2) 16946: (5,4,1,3,2) %e A333218 6: (1,2) 616: (3,1,2,4) 16948: (5,4,1,2,3) %e A333218 37: (3,2,1) 649: (2,4,3,1) 16965: (5,3,4,2,1) %e A333218 38: (3,1,2) 652: (2,4,1,3) 16966: (5,3,4,1,2) %e A333218 41: (2,3,1) 657: (2,3,4,1) 16977: (5,3,2,4,1) %e A333218 44: (2,1,3) 664: (2,3,1,4) 16984: (5,3,2,1,4) %e A333218 50: (1,3,2) 708: (2,1,4,3) 16994: (5,3,1,4,2) %e A333218 52: (1,2,3) 712: (2,1,3,4) 17000: (5,3,1,2,4) %e A333218 549: (4,3,2,1) 786: (1,4,3,2) 17033: (5,2,4,3,1) %e A333218 550: (4,3,1,2) 788: (1,4,2,3) 17036: (5,2,4,1,3) %e A333218 553: (4,2,3,1) 802: (1,3,4,2) 17041: (5,2,3,4,1) %e A333218 556: (4,2,1,3) 808: (1,3,2,4) 17048: (5,2,3,1,4) %e A333218 562: (4,1,3,2) 836: (1,2,4,3) 17092: (5,2,1,4,3) %e A333218 564: (4,1,2,3) 840: (1,2,3,4) 17096: (5,2,1,3,4) %e A333218 581: (3,4,2,1) 16933: (5,4,3,2,1) 17170: (5,1,4,3,2) %e A333218 582: (3,4,1,2) 16934: (5,4,3,1,2) 17172: (5,1,4,2,3) %t A333218 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A333218 Select[Range[0,1000],#==0||UnsameQ@@stc[#]&&Max@@stc[#]==Length[stc[#]]&] %Y A333218 A superset of A164894. %Y A333218 Also a superset of A246534. %Y A333218 Not requiring the parts to be distinct gives A333217. %Y A333218 Cf. A000120, A000142, A048793, A066099, A070939, A114994, A225620, A233564, A272919, A333219, A333221, A333255, A333256. %K A333218 nonn %O A333218 1,3 %A A333218 _Gus Wiseman_, Mar 16 2020