cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333220 The number k such that the k-th composition in standard order consists of the prime indices of n in weakly increasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 10, 12, 16, 14, 32, 24, 20, 15, 64, 26, 128, 28, 40, 48, 256, 30, 36, 96, 42, 56, 512, 52, 1024, 31, 80, 192, 72, 58, 2048, 384, 160, 60, 4096, 104, 8192, 112, 84, 768, 16384, 62, 136, 100, 320, 224, 32768, 106, 144, 120, 640, 1536
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding compositions begins:
      0: ()             128: (8)             2048: (12)
      1: (1)             28: (1,1,3)          384: (1,8)
      2: (2)             40: (2,4)            160: (2,6)
      3: (1,1)           48: (1,5)             60: (1,1,1,3)
      4: (3)            256: (9)             4096: (13)
      6: (1,2)           30: (1,1,1,2)        104: (1,2,4)
      8: (4)             36: (3,3)           8192: (14)
      7: (1,1,1)         96: (1,6)            112: (1,1,5)
     10: (2,2)           42: (2,2,2)           84: (2,2,3)
     12: (1,3)           56: (1,1,4)          768: (1,9)
     16: (5)            512: (10)           16384: (15)
     14: (1,1,2)         52: (1,2,3)           62: (1,1,1,1,2)
     32: (6)           1024: (11)             136: (4,4)
     24: (1,4)           31: (1,1,1,1,1)      100: (1,3,3)
     20: (2,3)           80: (2,5)            320: (2,7)
     15: (1,1,1,1)      192: (1,7)            224: (1,1,6)
     64: (7)             72: (3,4)          32768: (16)
     26: (1,2,2)         58: (1,1,2,2)        106: (1,2,2,2)
		

Crossrefs

The version with prime indices taken in weakly decreasing order is A233249.
A partial inverse is A333219.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    Table[fbi[Accumulate[Reverse[primeMS[n]]]],{n,100}]

Formula

A000120(a(n)) = A056239(n).