A333220 The number k such that the k-th composition in standard order consists of the prime indices of n in weakly increasing order.
0, 1, 2, 3, 4, 6, 8, 7, 10, 12, 16, 14, 32, 24, 20, 15, 64, 26, 128, 28, 40, 48, 256, 30, 36, 96, 42, 56, 512, 52, 1024, 31, 80, 192, 72, 58, 2048, 384, 160, 60, 4096, 104, 8192, 112, 84, 768, 16384, 62, 136, 100, 320, 224, 32768, 106, 144, 120, 640, 1536
Offset: 1
Keywords
Examples
The sequence of terms together with the corresponding compositions begins: 0: () 128: (8) 2048: (12) 1: (1) 28: (1,1,3) 384: (1,8) 2: (2) 40: (2,4) 160: (2,6) 3: (1,1) 48: (1,5) 60: (1,1,1,3) 4: (3) 256: (9) 4096: (13) 6: (1,2) 30: (1,1,1,2) 104: (1,2,4) 8: (4) 36: (3,3) 8192: (14) 7: (1,1,1) 96: (1,6) 112: (1,1,5) 10: (2,2) 42: (2,2,2) 84: (2,2,3) 12: (1,3) 56: (1,1,4) 768: (1,9) 16: (5) 512: (10) 16384: (15) 14: (1,1,2) 52: (1,2,3) 62: (1,1,1,1,2) 32: (6) 1024: (11) 136: (4,4) 24: (1,4) 31: (1,1,1,1,1) 100: (1,3,3) 20: (2,3) 80: (2,5) 320: (2,7) 15: (1,1,1,1) 192: (1,7) 224: (1,1,6) 64: (7) 72: (3,4) 32768: (16) 26: (1,2,2) 58: (1,1,2,2) 106: (1,2,2,2)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; fbi[q_]:=If[q=={},0,Total[2^q]/2]; Table[fbi[Accumulate[Reverse[primeMS[n]]]],{n,100}]
Comments