cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333221 Irregular triangle read by rows where row n lists the set of STC-numbers of permutations of the prime indices of n.

This page as a plain text file.
%I A333221 #8 Mar 17 2020 21:18:23
%S A333221 0,1,2,3,4,5,6,8,7,10,9,12,16,11,13,14,32,17,24,18,20,15,64,21,22,26,
%T A333221 128,19,25,28,34,40,33,48,256,23,27,29,30,36,65,96,42,35,49,56,512,37,
%U A333221 38,41,44,50,52,1024,31,66,80,129,192,68,72,43,45,46,53,54,58
%N A333221 Irregular triangle read by rows where row n lists the set of STC-numbers of permutations of the prime indices of n.
%C A333221 This is a permutation of the nonnegative integers.
%C A333221 The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. We define the composition with STC-number k to be the k-th composition in standard order.
%C A333221 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A333221 Reading by columns gives:
%e A333221   0  1  2  3  4  5  8  7  10  9   16  11  32  17  18  15  64  21  128  19
%e A333221                  6            12      13      24  20          22       25
%e A333221                                       14                      26       28
%e A333221   34  33  256  23  36  65  42  35  512  37  1024  31  66  129  68  43
%e A333221   40  48       27      96      49       38            80  192  72  45
%e A333221                29              56       41                         46
%e A333221                30                       44                         53
%e A333221                                         50                         54
%e A333221                                         52                         58
%e A333221 The sequence of terms together with the corresponding compositions begins:
%e A333221      0: ()           24: (1,4)          27: (1,2,1,1)
%e A333221      1: (1)          18: (3,2)          29: (1,1,2,1)
%e A333221      2: (2)          20: (2,3)          30: (1,1,1,2)
%e A333221      3: (1,1)        15: (1,1,1,1)      36: (3,3)
%e A333221      4: (3)          64: (7)            65: (6,1)
%e A333221      5: (2,1)        21: (2,2,1)        96: (1,6)
%e A333221      6: (1,2)        22: (2,1,2)        42: (2,2,2)
%e A333221      8: (4)          26: (1,2,2)        35: (4,1,1)
%e A333221      7: (1,1,1)     128: (8)            49: (1,4,1)
%e A333221     10: (2,2)        19: (3,1,1)        56: (1,1,4)
%e A333221      9: (3,1)        25: (1,3,1)       512: (10)
%e A333221     12: (1,3)        28: (1,1,3)        37: (3,2,1)
%e A333221     16: (5)          34: (4,2)          38: (3,1,2)
%e A333221     11: (2,1,1)      40: (2,4)          41: (2,3,1)
%e A333221     13: (1,2,1)      33: (5,1)          44: (2,1,3)
%e A333221     14: (1,1,2)      48: (1,5)          50: (1,3,2)
%e A333221     32: (6)         256: (9)            52: (1,2,3)
%e A333221     17: (4,1)        23: (2,1,1,1)    1024: (11)
%t A333221 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A333221 fbi[q_]:=If[q=={},0,Total[2^q]/2];
%t A333221 Table[Sort[fbi/@Accumulate/@Permutations[primeMS[n]]],{n,30}]
%Y A333221 Row lengths are A008480.
%Y A333221 Column k = 1 is A233249.
%Y A333221 Column k = -1 is A333220.
%Y A333221 A related triangle for partitions is A215366.
%Y A333221 Cf. A000120, A029931, A048793, A056239, A066099, A070939, A112798, A114994, A225620, A228351, A333218, A333219.
%K A333221 nonn,tabf
%O A333221 1,3
%A A333221 _Gus Wiseman_, Mar 17 2020