This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333225 #8 Mar 28 2020 17:46:08 %S A333225 1,2,4,8,16,18,64,128,256,66,1024,68,4096,258,132,32768,65536,1026, %T A333225 262144,264,516,4098 %N A333225 Position of first appearance of n in A333226 (LCMs of compositions in standard order). %C A333225 The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. %e A333225 The sequence together with the corresponding compositions begins: %e A333225 1: (1) %e A333225 2: (2) %e A333225 4: (3) %e A333225 8: (4) %e A333225 16: (5) %e A333225 18: (3,2) %e A333225 64: (7) %e A333225 128: (8) %e A333225 256: (9) %e A333225 66: (5,2) %e A333225 1024: (11) %e A333225 68: (4,3) %e A333225 4096: (13) %e A333225 258: (7,2) %e A333225 132: (5,3) %e A333225 32768: (16) %e A333225 65536: (17) %e A333225 1026: (9,2) %e A333225 262144: (19) %e A333225 264: (5,4) %t A333225 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A333225 q=Table[LCM@@stc[n],{n,10000}]; %t A333225 Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}] %Y A333225 The version for binary indices is A333492. %Y A333225 The version for prime indices is A330225. %Y A333225 Let q(k) be the k-th composition in standard order: %Y A333225 - The terms of q(k) are row k of A066099. %Y A333225 - The sum of q(k) is A070939(k). %Y A333225 - The product of q(k) is A124758(k). %Y A333225 - The GCD of q(k) is A326674(k). %Y A333225 - The LCM of q(k) is A333226(k). %Y A333225 Cf. A000120, A029931, A074971, A076078, A233564, A271410, A289508, A289509, A290103, A333227. %K A333225 nonn,more %O A333225 1,2 %A A333225 _Gus Wiseman_, Mar 26 2020