cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333225 Position of first appearance of n in A333226 (LCMs of compositions in standard order).

This page as a plain text file.
%I A333225 #8 Mar 28 2020 17:46:08
%S A333225 1,2,4,8,16,18,64,128,256,66,1024,68,4096,258,132,32768,65536,1026,
%T A333225 262144,264,516,4098
%N A333225 Position of first appearance of n in A333226 (LCMs of compositions in standard order).
%C A333225 The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
%e A333225 The sequence together with the corresponding compositions begins:
%e A333225        1: (1)
%e A333225        2: (2)
%e A333225        4: (3)
%e A333225        8: (4)
%e A333225       16: (5)
%e A333225       18: (3,2)
%e A333225       64: (7)
%e A333225      128: (8)
%e A333225      256: (9)
%e A333225       66: (5,2)
%e A333225     1024: (11)
%e A333225       68: (4,3)
%e A333225     4096: (13)
%e A333225      258: (7,2)
%e A333225      132: (5,3)
%e A333225    32768: (16)
%e A333225    65536: (17)
%e A333225     1026: (9,2)
%e A333225   262144: (19)
%e A333225      264: (5,4)
%t A333225 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
%t A333225 q=Table[LCM@@stc[n],{n,10000}];
%t A333225 Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]
%Y A333225 The version for binary indices is A333492.
%Y A333225 The version for prime indices is A330225.
%Y A333225 Let q(k) be the k-th composition in standard order:
%Y A333225 - The terms of q(k) are row k of A066099.
%Y A333225 - The sum of q(k) is A070939(k).
%Y A333225 - The product of q(k) is A124758(k).
%Y A333225 - The GCD of q(k) is A326674(k).
%Y A333225 - The LCM of q(k) is A333226(k).
%Y A333225 Cf. A000120, A029931, A074971, A076078, A233564, A271410, A289508, A289509, A290103, A333227.
%K A333225 nonn,more
%O A333225 1,2
%A A333225 _Gus Wiseman_, Mar 26 2020