cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333235 a(n) is the product of indices of unitary prime power divisors of n.

This page as a plain text file.
%I A333235 #15 Sep 06 2024 14:09:01
%S A333235 1,1,2,3,4,2,5,6,7,4,8,6,9,5,8,10,11,7,12,12,10,8,13,12,14,9,15,15,16,
%T A333235 8,17,18,16,11,20,21,19,12,18,24,20,10,21,24,28,13,22,20,23,14,22,27,
%U A333235 24,15,32,30,24,16,25,24,26,17,35,27,36,16,28,33,26,20
%N A333235 a(n) is the product of indices of unitary prime power divisors of n.
%C A333235 Equivalently: replace each prime power p^e in the prime factorization of n by its index in A246655. - _M. F. Hasler_, Jun 16 2021
%H A333235 Robert Israel, <a href="/A333235/b333235.txt">Table of n, a(n) for n = 1..10000</a>
%F A333235 If n = Product (p_j^k_j) then a(n) = Product (A025528(p_j^k_j)).
%F A333235 a(prime(n)) = A027883(n).
%F A333235 a(2^n) = A182908(n).
%F A333235 a(A246655(n)) = n.
%e A333235 a(600) = a(2^3 * 3 * 5^2) = a(A246655(6) * A246655(2) * A246655(14)) = 6 * 2 * 14 = 168.
%p A333235 N:= 1000: # for a(1)..a(N)
%p A333235 R:= NULL: p:= 2:
%p A333235 while p < N do
%p A333235   R:= R,  seq(p^k,k=1..ilog[p](N));
%p A333235   p:= nextprime(p);
%p A333235 od:
%p A333235 L:= sort([R]):
%p A333235 f:= proc(n) local F, t;
%p A333235   F:= ifactors(n)[2];
%p A333235   mul(ListTools:-BinarySearch(L,t[1]^t[2]),t=F)
%p A333235 end proc:
%p A333235 map(f, [$1..N]); # _Robert Israel_, Feb 11 2021
%t A333235 PrimePowerPi[n_] := Sum[Boole[PrimePowerQ[k]], {k, 1, n}]; a[1] = 1; a[n_] := Times @@ (PrimePowerPi[#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 70}]
%o A333235 (PARI) apply( {A333235(n)=vecprod([A322981(f[1]^f[2])|f<-factor(n)~])}, [1..99]) \\ _M. F. Hasler_, Jun 16 2021
%Y A333235 Cf. A003963, A025528, A027883, A141128, A141809, A156061, A182908, A246655.
%Y A333235 Cf. A322981 (the index of n = p^e in A246655).
%K A333235 nonn,mult,look
%O A333235 1,3
%A A333235 _Ilya Gutkovskiy_, Mar 12 2020