cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333242 Prime numbers with an odd number of steps in their prime index chain.

This page as a plain text file.
%I A333242 #42 Feb 21 2024 01:10:57
%S A333242 2,5,7,13,19,23,29,31,37,43,47,53,59,61,71,73,79,89,97,101,103,107,
%T A333242 113,131,137,139,149,151,163,167,173,179,181,193,197,199,223,227,229,
%U A333242 233,239,251,257,263,269,271,281,293,307,311,313,317,331,337,347,349,359,373
%N A333242 Prime numbers with an odd number of steps in their prime index chain.
%C A333242 This sequence can also be generated by the N-sieve.
%H A333242 Alois P. Heinz, <a href="/A333242/b333242.txt">Table of n, a(n) for n = 1..10000</a>
%H A333242 Michael P. May, <a href="https://doi.org/10.35834/2020/3202158">Properties of Higher-Order Prime Number Sequences</a>, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and <a href="https://arxiv.org/abs/2108.04662">arXiv version</a>, arXiv:2108.04662 [math.NT], 2021.
%H A333242 Michael P. May, <a href="https://arxiv.org/abs/2112.08941">Approximating the Prime Counting Function via an Operation on a Unique Prime Number Subsequence</a>, arXiv:2112.08941 [math.GM], 2021.
%H A333242 Michael P. May, <a href="https://doi.org/10.35834/2023/3501105">Relationship Between the Prime-Counting Function and a Unique Prime Number Sequence</a>, Missouri J. Math. Sci. (2023), Vol. 35, No. 1, 105-116.
%H A333242 Michael P. May, <a href="https://arxiv.org/abs/2402.13214">Application of the Inclusion-Exclusion Principle to Prime Number Subsequences</a>, arXiv:2402.13214 [math.GM], 2024.
%F A333242 { p in primes : A078442(p) mod 2 = 1 }.
%F A333242 a(n) = A000720(A262275(n)). - _Andrew Howroyd_, Mar 15 2020
%p A333242 b:= proc(n) option remember;
%p A333242        `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
%p A333242     end:
%p A333242 a:= proc(n) option remember; local p; p:= a(n-1);
%p A333242       do p:= nextprime(p);
%p A333242          if b(p)::odd then break fi
%p A333242       od; p
%p A333242     end: a(1):=2:
%p A333242 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 15 2020
%t A333242 Select[Prime@ Range@ 75, EvenQ@ Length@ NestWhileList[ PrimePi, #, PrimeQ] &] (* _Giovanni Resta_, Mar 15 2020 *)
%o A333242 (PARI) \\ here b(n) is A078442.
%o A333242 b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k}
%o A333242 select(n->b(n)%2, [1..500]) \\ _Andrew Howroyd_, Mar 15 2020
%Y A333242 Cf. A000040, A000720, A078442, A262275 (complement in primes), A333243, A333244.
%K A333242 nonn
%O A333242 1,1
%A A333242 _Michael P. May_, Mar 12 2020
%E A333242 Terms a(21) and beyond from _Andrew Howroyd_, Mar 15 2020