This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333243 #33 Nov 18 2022 09:23:39 %S A333243 5,31,59,179,331,431,599,709,919,1153,1297,1523,1787,1847,2381,2477, %T A333243 2749,3259,3637,3943,4091,4273,4549,5623,5869,6113,6661,6823,7607, %U A333243 7841,8221,8527,8719,9461,9739,9859,11743,11953,12097,12301,12547,13469,13709,14177 %N A333243 Prime numbers with prime indices in A262275. %C A333243 This sequence can also be generated by the N-sieve. %H A333243 Michael De Vlieger, <a href="/A333243/b333243.txt">Table of n, a(n) for n = 1..10000</a> %H A333243 Michael P. May, <a href="https://arxiv.org/abs/1608.08082">On the Properties of Special Prime Number Subsequences</a>, arXiv:1608.08082 [math.GM], 2016-2020. %H A333243 Michael P. May, <a href="https://doi.org/10.35834/2020/3202158">Properties of Higher-Order Prime Number Sequences</a>, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and <a href="https://arxiv.org/abs/2108.04662">arXiv version</a>, arXiv:2108.04662 [math.NT], 2021. %F A333243 a(n) = prime(A262275(n)). %e A333243 a(1) = prime(A262275(1)) = prime(3) = 5. %p A333243 b:= proc(n) option remember; %p A333243 `if`(isprime(n), 1+b(numtheory[pi](n)), 0) %p A333243 end: %p A333243 a:= proc(n) option remember; local p; %p A333243 p:= `if`(n=1, 1, a(n-1)); %p A333243 do p:= nextprime(p); %p A333243 if (h-> h>1 and h::odd)(b(p)) then break fi %p A333243 od; p %p A333243 end: %p A333243 seq(a(n), n=1..50); # _Alois P. Heinz_, Mar 15 2020 %t A333243 b[n_] := b[n] = If[PrimeQ[n], 1+b[PrimePi[n]], 0]; %t A333243 a[n_] := a[n] = Module[{p}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[#>1 && OddQ[#]&[b[p]], Break[]]]; p]; %t A333243 Array[a, 50] (* _Jean-François Alcover_, Nov 16 2020, after _Alois P. Heinz_ *) %o A333243 (PARI) b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k}; %o A333243 apply(x->prime(prime(x)), select(n->b(n)%2, [1..500])) \\ _Michel Marcus_, Nov 18 2022 %Y A333243 Cf. A078442, A262275, A333242, A333244. %K A333243 nonn %O A333243 1,1 %A A333243 _Michael P. May_, Mar 12 2020