This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333244 #30 Nov 18 2022 09:23:35 %S A333244 11,127,277,1063,2221,3001,4397,5381,7193,9319,10631,12763,15299, %T A333244 15823,21179,22093,24859,30133,33967,37217,38833,40819,43651,55351, %U A333244 57943,60647,66851,68639,77431,80071,84347,87803,90023,98519,101701,103069,125113,127643 %N A333244 Prime numbers with prime indices in A333243. %C A333244 This sequence can also be generated by the N-sieve. %H A333244 Michael De Vlieger, <a href="/A333244/b333244.txt">Table of n, a(n) for n = 1..10000</a> %H A333244 Michael P. May, <a href="https://arxiv.org/abs/1608.08082">On the Properties of Special Prime Number Subsequences</a>, arXiv:1608.08082 [math.GM], 2016-2020. %H A333244 Michael P. May, <a href="https://doi.org/10.35834/2020/3202158">Properties of Higher-Order Prime Number Sequences</a>, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and <a href="https://arxiv.org/abs/2108.04662">arXiv version</a>, arXiv:2108.04662 [math.NT], 2021. %F A333244 a(n) = prime(A333243(n)). %e A333244 a(1) = prime(A333243(1)) = prime(5) = 11. %p A333244 b:= proc(n) option remember; %p A333244 `if`(isprime(n), 1+b(numtheory[pi](n)), 0) %p A333244 end: %p A333244 a:= proc(n) option remember; local p; %p A333244 p:= `if`(n=1, 1, a(n-1)); %p A333244 do p:= nextprime(p); %p A333244 if (h-> h>2 and h::even)(b(p)) then break fi %p A333244 od; p %p A333244 end: %p A333244 seq(a(n), n=1..42); # _Alois P. Heinz_, Mar 15 2020 %t A333244 b[n_] := b[n] = If[PrimeQ[n], 1+b[PrimePi[n]], 0]; %t A333244 a[n_] := a[n] = Module[{p}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[#>2 && EvenQ[#]&[b[p]], Break[]]]; p]; %t A333244 Array[a, 42] (* _Jean-François Alcover_, Nov 16 2020, after _Alois P. Heinz_ *) %o A333244 (PARI) b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k}; %o A333244 apply(x->prime(prime(prime(x))), select(n->b(n)%2, [1..500])) \\ _Michel Marcus_, Nov 18 2022 %Y A333244 Cf. A078442, A262275, A333242, A333243. %K A333244 nonn %O A333244 1,1 %A A333244 _Michael P. May_, Mar 12 2020