This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333254 #14 Jan 06 2021 19:19:24 %S A333254 1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2, %T A333254 1,2,1,1,1,1,1,2,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1, %U A333254 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A333254 Lengths of maximal runs in the sequence of prime gaps (A001223). %C A333254 Prime gaps are differences between adjacent prime numbers. %C A333254 Also lengths of maximal arithmetic progressions of consecutive primes. %H A333254 Robert Israel, <a href="/A333254/b333254.txt">Table of n, a(n) for n = 1..10000</a> %H A333254 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a> %H A333254 Wikipedia, <a href="https://en.wikipedia.org/wiki/Longest_increasing_subsequence">Longest increasing subsequence</a> %F A333254 Partial sums are A333214. %e A333254 The prime gaps split into the following runs: (1), (2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), (2), (6), (4), ... %p A333254 p:= 3: t:= 1: R:= NULL: s:= 1: count:= 0: %p A333254 for i from 2 while count < 100 do %p A333254 q:= nextprime(p); %p A333254 g:= q-p; p:= q; %p A333254 if g = t then s:= s+1 %p A333254 else count:= count+1; R:= R, s; t:= g; s:= 1; %p A333254 fi %p A333254 od: %p A333254 R; # _Robert Israel_, Jan 06 2021 %t A333254 Length/@Split[Differences[Array[Prime,100]],#1==#2&]//Most %Y A333254 The version for A000002 is A000002. Similarly for A001462. %Y A333254 The unequal version is A333216. %Y A333254 The weakly decreasing version is A333212. %Y A333254 The weakly increasing version is A333215. %Y A333254 The strictly decreasing version is A333252. %Y A333254 The strictly increasing version is A333253. %Y A333254 Positions of first appearances are A335406. %Y A333254 The first term of the first length-n arithmetic progression of consecutive primes is A006560(n), with index A089180(n). %Y A333254 Prime gaps are A001223. %Y A333254 Positions of adjacent equal prime gaps are A064113. %Y A333254 Positions of adjacent unequal prime gaps are A333214. %Y A333254 Cf. A000040, A031217, A054800, A059044, A084758, A090832, A124767, A238279, A295235. %K A333254 nonn %O A333254 1,2 %A A333254 _Gus Wiseman_, Mar 20 2020