This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333267 #10 Mar 27 2020 20:17:28 %S A333267 1,1,1,2,1,1,2,3,2,1,1,2,1,2,1,4,2,2,3,2,2,1,2,3,2,1,3,4,1,1,1,5,1,2, %T A333267 2,4,2,3,1,3,1,2,2,2,2,2,1,4,4,2,2,2,4,3,1,6,3,1,2,2,2,1,4,6,1,1,3,4, %U A333267 2,2,2,6,2,2,2,6,2,1,1,4,4,1,2,4,2,2,1,3,3,2,2,4,1,1,3,5,2,4,2,4 %N A333267 If n = Product (p_j^k_j) then a(n) = Product (a(pi(p_j)) * k_j), where pi = A000720. %H A333267 Alois P. Heinz, <a href="/A333267/b333267.txt">Table of n, a(n) for n = 1..65536</a> %H A333267 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A333267 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A333267 a(n) = A005361(n) * Product_{p|n, p prime} a(pi(p)). %F A333267 a(n) = a(prime(n)). %F A333267 a(p^k) = k * a(p), where p is prime. %F A333267 a(A002110(n)) = Product_{k=1..n} a(k). %e A333267 a(36) = a(2^2 * 3^2) = a(prime(1)^2 * prime(2)^2) = a(1) * 2 * a(2) * 2 = 4. %p A333267 a:= proc(n) option remember; %p A333267 mul(a(numtheory[pi](i[1]))*i[2], i=ifactors(n)[2]) %p A333267 end: %p A333267 seq(a(n), n=1..120); # _Alois P. Heinz_, Mar 13 2020 %t A333267 a[1] = 1; a[n_] := a[n] = Times @@ (a[PrimePi[#[[1]]]] #[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}] %Y A333267 Cf. A000026, A000720, A002110, A003963, A005361, A054725, A109129, A276625 (positions of 1's), A282446, A304117, A318046, A328880. %K A333267 nonn,mult %O A333267 1,4 %A A333267 _Ilya Gutkovskiy_, Mar 13 2020