cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333275 Irregular triangle read by rows: consider the graph defined in A306302 formed from a row of n adjacent congruent rectangles by drawing the diagonals of all visible rectangles; T(n,k) (n >= 1, 2 <= k <= 2n+2) is the number of non-boundary vertices in the graph at which k polygons meet.

Original entry on oeis.org

0, 0, 1, 0, 0, 6, 0, 1, 0, 0, 24, 0, 2, 0, 1, 0, 0, 54, 0, 8, 0, 2, 0, 1, 0, 0, 124, 0, 18, 0, 2, 0, 2, 0, 1, 0, 0, 214, 0, 32, 0, 10, 0, 2, 0, 2, 0, 1, 0, 0, 382, 0, 50, 0, 22, 0, 2, 0, 2, 0, 2, 0, 1, 0, 0, 598, 0, 102, 0, 18, 0, 12, 0, 2, 0, 2, 0, 2, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The number of polygons meeting at a non-boundary vertex is simply the degree (or valency) of that vertex.
Row sums are A159065.
Sum_k k*T(n,k) gives A333277.
See A333274 for the degrees if the boundary vertices are included.
T(n,k) = 0 if k is odd. But the triangle includes those zero entries because this is used to construct A333274.

Examples

			Led d denote the number of polygons meeting at a vertex.
For n=2, in the interiors of each of the two squares there are 3 points with d=4, and the center point has d=6.
So in total there are 6 points with d=4 and 1 with d=6. So row 2 of the triangle is [0, 0, 6, 0, 1].
The triangle begins:
0,0,1,
0,0,6,0,1,
0,0,24,0,2,0,1,
0,0,54,0,8,0,2,0,1,
0,0,124,0,18,0,2,0,2,0,1,
0,0,214,0,32,0,10,0,2,0,2,0,1,
0,0,382,0,50,0,22,0,2,0,2,0,2,0,1,
0,0,598,0,102,0,18,0,12,0,2,0,2,0,2,0,1
...
If we leave out the uninteresting zeros, the triangle begins:
[1]
[6, 1]
[24, 2, 1]
[54, 8, 2, 1]
[124, 18, 2, 2, 1]
[214, 32, 10, 2, 2, 1]
[382, 50, 22, 2, 2, 2, 1]
[598, 102, 18, 12, 2, 2, 2, 1]
[950, 126, 32, 26, 2, 2, 2, 2, 1]
[1334, 198, 62, 20, 14, 2, 2, 2, 2, 1]
[1912, 286, 100, 10, 30, 2, 2, 2, 2, 2, 1]
[2622, 390, 118, 38, 22, 16, 2, 2, 2, 2, 2, 1]
... - _N. J. A. Sloane_, Jul 27 2020
		

Crossrefs

Extensions

a(36) and beyond from Lars Blomberg, Jun 17 2020