This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333279 #27 May 29 2021 07:04:43 %S A333279 16,56,176,388,822,1452,2516,3952,6060,8736,12492,17040,23102,30280, %T A333279 39234,49688,62730,77556,95642,115992,139874,166560,197992,232600, %U A333279 272574,316460,366390,420792,482748,549516,624962,706436,796766,893844,1001074,1115428 %N A333279 Column 2 of triangle in A288187. %C A333279 For the graphs defined in A331452 and A288187 only the counts for graphs that are one square wide have formulas for regions, edges, and vertices (see A306302, A331757, A331755). For width 2 there are six such sequences (A331766, A331765, A331763; A333279, A333280, A333281). It would be nice to have a formula for any one of them. %C A333279 The maximum number of edges over all chambers is 4 for 1 <= n <= 4 and 5 for 5 <= n <= 160. - _Lars Blomberg_, May 23 2021 %H A333279 Lars Blomberg, <a href="/A333279/b333279.txt">Table of n, a(n) for n = 1..200</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279.png">Colored illustration of a(1)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_1.png">Colored illustration of a(2)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_2.png">Colored illustration of a(3)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_3.png">Colored illustration of a(4)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_4.png">Colored illustration of a(5)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_5.png">Colored illustration of a(6)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_6.png">Colored illustration of a(7)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_7.png">Colored illustration of a(8)</a> %H A333279 Lars Blomberg, <a href="/A333279/a333279_8.png">Colored illustration of a(9)</a> %H A333279 Hugo Pfoertner, <a href="/A288177/a288177.pdf">Illustrations of Chamber Complexes up to 5 X 5</a>. %Y A333279 Cf. A331452, A288187; A331766, A331765, A331763; A333279, A333280, A333281. %K A333279 nonn %O A333279 1,1 %A A333279 _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 15 2020 %E A333279 a(10) and beyond from _Lars Blomberg_, May 23 2021