A333290 Irregular triangle read by rows: coefficients b_{r,j} (r>=1, j>=0) arising from an expansion of the partition function.
1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 0, 2, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 1, 1, -1, 1, -1, -1, 0, 0, 1, 0, 2, 0, -1, -1, -1, -1, 0, 2, 0, 1, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 0, 1, 1, 0, -1, -1, -2, 0, 0, 0, 2, 1, 1, 0, -1, -1, 0, -1, 0, 0, 1, 1, -1, 1, -1, -1, 0, 0, 1, 0, 1, 0, 1, 0, -1, -2, -1, 0, -1, 1
Offset: 1
Examples
Triangle begins: 1, 1,-1, 1,-1,-1,1, 1,-1,-1,0,1,1,-1, 1,-1,-1,0,0,2,0,0,-1,-1,1, 1,-1,-1,0,0,1,1,1,-1,-1,-1,0,0,1,1,-1, ...
Links
- Mircea Merca and Maxie D. Schmidt, The partition function p(n) in terms of the classical Möbius function, Ramanujan J (2019) 49:87-96.
Crossrefs
Cf. A333289.
Programs
-
Maple
A333290 := proc(r,j) if r < 1 then 0 ; elif r = 1 then if j= 0 then 1; else 0 ; end if; elif j < r-1 then procname(r-1,j) ; else procname(r-1,j) -procname(r-1,j-r+1) ;; end if; end proc: # R. J. Mathar, Mar 21 2020
-
Mathematica
b[r_, j_] := b[r, j] = Which[r < 1, 0, r == 1, If[j == 0, 1, 0], j < r-1, b[r-1, j], True, b[r-1, j] - b[r-1, j-r+1]]; Table[b[r, j], {r, 1, 9}, {j, 0, r(r-1)/2}] // Flatten (* Jean-François Alcover, Apr 29 2023, after R. J. Mathar *)
Comments