cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333299 Number of canonical sequences of moves of length n for the Rubik's cube puzzle using the quarter-turn metric.

This page as a plain text file.
%I A333299 #12 Dec 31 2024 16:59:35
%S A333299 1,12,114,1068,10011,93840,879624,8245296,77288598,724477008,
%T A333299 6791000856,63656530320,596694646092,5593212493440,52428869944896,
%U A333299 491450379709824,4606688566257048,43181530471120320,404768967341615520,3794166513675844032,35565225338407615152
%N A333299 Number of canonical sequences of moves of length n for the Rubik's cube puzzle using the quarter-turn metric.
%D A333299 Rokicki, Tomas. Thirty years of computer cubing: The search for God's number. 2014. Reprinted in "Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rogers", ed. Thane Plambeck and Tomas Rokicki, MAA Press, 2020, pp. 79-98. Table 9.5 gives terms 0 through 18.
%F A333299 Conjectures from _Colin Barker_, Mar 23 2020: (Start)
%F A333299 G.f.: (1 + x)^4 / (1 - 8*x - 12*x^2 - 8*x^3 - 2*x^4).
%F A333299 a(n) = 8*a(n-1) + 12*a(n-2) + 8*a(n-3) + 2*a(n-4) for n>4.
%F A333299 (End)
%F A333299 The above conjectured formulas are true. - _Ben Whitmore_, Dec 30 2024
%t A333299 CoefficientList[Series[1 + 3a/(1 - 2a) /. a -> (1 + x)^4 - 1, {x, 0, 100}], x] (* _Ben Whitmore_, Dec 30 2024 *)
%Y A333299 Cf. A080601, A080602, A333298.
%K A333299 nonn,easy
%O A333299 0,2
%A A333299 _N. J. A. Sloane_, Mar 23 2020
%E A333299 More terms from _Ben Whitmore_, Dec 30 2024