A333312 Positive integers m >= 2 such that there is a value of v such that the sequence {v, ..., v + m - 1} of m nonnegative integers can be partitioned into two subsets of consecutive integers with the same sum.
9, 15, 20, 21, 24, 25, 27, 28, 33, 35, 36, 39, 40, 44, 45, 48, 49, 51, 52, 55, 56, 57, 60, 63, 65, 68, 69, 72, 75, 76, 77, 80, 81, 84, 85, 87, 88, 91, 92, 93, 95, 96, 99, 100, 104, 105, 108, 111, 112, 115, 116, 117, 119, 120, 121, 123, 124, 125, 129, 132, 133
Offset: 1
Keywords
Examples
m = 9, v=16: 16 + 17 + 18 + 19 + 20 = 21 + 22 + 23 + 24. m = 9, v=2: 2 + 3 + 4 + 5 + 6 + 7 = 8 + 9 + 10 = 27.
References
- Wilfried Haag, Die Wurzel. Problem 2020 - 14. (March/April 2020: www.wurzel.org)
Programs
-
Python
for m in range(3, 1000): anz = 0 for i in range(m // 2 + 1, m): l = (2 * i * i - 2 * i - m * (m - 1)) / (2 * (m - 2 * i)) if l - int(l) == 0 and l >= 0: anz = anz + 1 if anz > 1: print(m)
Formula
For m = 6 * k + 3, you can always find two subsets of {v, ...,v+m-1} of length 3 * k + 2 with v = (3 * k + 1)^2 and length 3 * k + 3 with v = 3*k^2-1 elements.
Comments