A333314 Composite non-Carmichael numbers k such that rad(phi(k)) divides k-1, where rad(k) is the squarefree kernel of k (A007947) and phi is the Euler totient function (A000010).
15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 595, 679, 703, 763, 771, 949, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2509, 2701, 2761, 2955, 3031, 3097, 3145, 3277, 3367, 3409, 3589, 3655, 3667
Offset: 1
Keywords
Examples
15 = 3 * 5 is a term since it is composite and not a Carmichael number, and rad(phi(15)) = rad(8) = 2 divides 15 - 1 = 14.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Nathan McNew and Thomas Wright, Infinitude of k-Lehmer numbers which are not Carmichael, International Journal of Number Theory, Vol. 12, No. 7 (2016), pp. 1863-1869; preprint, arXiv:1508.05547 [math.NT], 2015.
Crossrefs
Programs
-
Mathematica
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[4000], Divisible[#-1, rad[EulerPhi[#]]] && !Divisible[#-1, CarmichaelLambda[#]] &]
Comments