This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333321 #18 May 01 2020 16:22:02 %S A333321 0,0,0,0,0,0,0,0,4,5,25,30,90,105,245,280,560,630,1134,1260,2100,2310, %T A333321 3630,3960,5940,6435,9295,10010,14014,15015,20475,21840,29120,30940, %U A333321 40460,42840,55080,58140,73644,77520,96900,101745,125685,131670,160930,168245,203665,212520 %N A333321 a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 4 even numbers. %C A333321 The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j). %H A333321 Colin Barker, <a href="/A333321/b333321.txt">Table of n, a(n) for n = 0..1000</a> %H A333321 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1). %F A333321 a(n) = ceiling(n/2) * binomial(floor(n/2), 4). %F A333321 From _Colin Barker_, Mar 17 2020: (Start) %F A333321 G.f.: x^8*(4 + x) / ((1 - x)^6*(1 + x)^5). %F A333321 a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>10. %F A333321 (End) %e A333321 a(9)=5 and the 5 subsets are {1,2,4,6,8}, {2,3,4,6,8}, {2,4,5,6,8}, {2,4,6,7,8}, {2,4,6,8,9}. %t A333321 Array[Binomial[Ceiling[#], 1] Binomial[Floor[#], 4] &[#/2] &, 48, 0] (* _Michael De Vlieger_, Mar 14 2020 *) %o A333321 (PARI) concat([0,0,0,0,0,0,0,0], Vec(x^8*(4 + x) / ((1 - x)^6*(1 + x)^5) + O(x^45))) \\ _Colin Barker_, Mar 17 2020 %Y A333321 Cf. A330298, A330299, A333320. %K A333321 nonn,easy %O A333321 0,9 %A A333321 _Enrique Navarrete_, Mar 14 2020