This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333323 #49 Nov 29 2022 01:34:36 %S A333323 1,3,42,1799,232094,92617031,115156685746,442641690778179, %T A333323 5224287477491915786,188825256606226776728029, %U A333323 20879416139356164466643759334,7057757437924198729598570424130207,7287699030020917172151307665469211016474,22973720258279267139936821063450448822110219653 %N A333323 Number of self-avoiding closed paths on an n X n grid which pass through NW and SE corners. %H A333323 Anthony J. Guttmann and Iwan Jensen, <a href="/A333323/b333323.txt">Table of n, a(n) for n = 2..27</a> %H A333323 Anthony J. Guttmann and Iwan Jensen, <a href="https://arxiv.org/abs/2208.06744">Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices</a>, arXiv:2208.06744 [math-ph], Aug 13 2022, Table D2 (with offset 1). %H A333323 Anthony J. Guttmann and Iwan Jensen, <a href="https://arxiv.org/abs/2211.14482">The gerrymander sequence, or A348456</a>, arXiv:2211.14482 [math.CO], 2022. %e A333323 a(2) = 1; %e A333323 +--* %e A333323 | | %e A333323 *--+ %e A333323 a(3) = 3; %e A333323 +--*--* +--*--* +--* %e A333323 | | | | | | %e A333323 *--* * * * * *--* %e A333323 | | | | | | %e A333323 *--+ *--*--+ *--*--+ %o A333323 (Python) %o A333323 # Using graphillion %o A333323 from graphillion import GraphSet %o A333323 import graphillion.tutorial as tl %o A333323 def A333323(n): %o A333323 universe = tl.grid(n - 1, n - 1) %o A333323 GraphSet.set_universe(universe) %o A333323 cycles = GraphSet.cycles().including(1).including(n * n) %o A333323 return cycles.len() %o A333323 print([A333323(n) for n in range(2, 10)]) %Y A333323 Cf. A007764, A333246, A333247, A333466. %Y A333323 Cf. A121785, A356610-A356616, A354511. %K A333323 nonn %O A333323 2,2 %A A333323 _Seiichi Manyama_, Mar 23 2020 %E A333323 a(11) from _Seiichi Manyama_, Apr 07 2020 %E A333323 a(10) and a(12)-a(15) from _Vaclav Kotesovec_, Aug 16 2022 (computed by _Anthony Guttmann_)