This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333325 #21 Nov 29 2020 12:46:01 %S A333325 0,1,0,2,0,1,0,0,1,2,0,1,0,2,0,1,2,0,2,1,0,1,2,0,1,0,2,0,1,2,0,2,2,0, %T A333325 1,0,2,0,1,2,0,0,1,0,2,0,1,0,0,1,2,0,1,0,2,0,1,2,0,2,1,0,1,2,0,1,0,2, %U A333325 0,1,2,0,2,2,0,1,0,2,0,1,2 %N A333325 Lexicographically earliest sequence over {0,1,2} that has the shortest square subsequence. %C A333325 This is very similar to A333307. See that sequence for details about the precise definition. - _N. J. A. Sloane_, Nov 29 2020 %e A333325 a(7) = 0, since: %e A333325 0 yields a square subsequence of length 2: [0, 0], %e A333325 1 of length 4: [0, 1, 0, 1], %e A333325 2 of length 8: [0, 1, 0, 2, 0, 1, 0, 2]. %o A333325 (Python) %o A333325 def a333325(n): %o A333325 seq = [] %o A333325 for k in range(n): %o A333325 options = [] %o A333325 l = len(seq) + 1 %o A333325 for m in range(3): # base %o A333325 for i in range(l // 2, -1, -1): %o A333325 if seq[l - 2 * i: l - i] == seq[l - i:] + [m]: break %o A333325 options.append(2 * i) %o A333325 seq.append(options.index(min(options))) %o A333325 return seq %o A333325 print(a333325(81)) %Y A333325 Cf. A006345, A157238, A283131, A007814. %K A333325 nonn %O A333325 0,4 %A A333325 _Jan Koornstra_, Mar 15 2020